

Community White Paper Simulation

V. Daniel Elvira (Fermilab) John Harvey (CERN)

Scope

Full and Fast simulation applications of HEP experiments (detectors, beam lines):

MC truth, geometry, particle propagation in materials and fields, physics modeling, pileup, digitization, analysis/monitoring tools

Software and physics support, training

(Outside scope: generators, event visualization, propagation/manipulation of beams through accelerator lattice (i.e. LHC), space or medical applications)

Scope - detail

- Handling of MC truth information
- Geometry description software tools (DDL, interface to CAD), geometry description
- Navigation, error transport (GEANE)
- Explore random number generator options fast, guarantee reproducibility in the world of parallel computing
- Modeling of pileup
- Readout modeling (digitization)
- Physics models of particle interaction with matter, decay tables, evaluation of systematic uncertainties associated to physics models
- Physics validation (unit tests, thin target experiments, test beam experiments, in-situ)

Scope - detail

- Generic detector-independent Fast Sim framework
- Fast Sim tuning to Full Sim, test beam, experiment data
- Modeling of neutrino beams from proton-target
- Neutrino-nucleus interaction (GENIE)* and interface with nucleus de-excitation and hadronic shower (Geant4)
- Low energy neutrons, modeling of shielding
- Computing performance monitoring (profiling, instrumentation code to measure in what functions, what particles, what energy ranges the time is spent)
- Software training and support
- * Some overlap with generators group

Challenges

1. Improving computing performance

- Geometry library optimization/vectorization (i.e. VecGeom)
- Explore options to reduce digitization time (vectorization?)
- Continue work to exploit benefits of vectorization, SIMD, data locality in modern architectures (CPU, GPU, coprocessors)
 - Develop prototype application for complex experiment and demonstrate 2-5X CPU gain
- Continue tests of simulation applications in HPC

Challenges

2. Improving physics accuracy

- Improve, re-implement physics models
- Validate physics models for LAr
- Extend hadronic physics for the FCC energy frontier
- Improve Full-Fast Sim agreement to expand Fast Sim use
- Shower library development
- 3. Pileup handling (I/O and local bandwidth issues)
- 4. Find areas of commonality across experiments for Fast Sim, Geometry tools, ..., etc

CWP Simulation Plan

Hold a series of meetings (once a month) on different topics - recruit and invite experts

- > First meeting (February 27th) on Computing Performance
 - ✓ Reports by ATLAS, CMS, LHCb, ALICE, neutrino and muon experiments
 - ✓ Geant4 modules take between <10% (neutrinos) to ~50% (LHC) of all computing resources
 - ✓ MC Simulation in general takes up to 85% of total resources.
 - ✓ In conversations on a common set of metrics for apples-to-apples comparisons focused on phase 2 detectors (ATLAS-CMS)
 - ✓ Next: recruit volunteers to write this up

CWP Simulation Plan

Hold a series of meetings (once a month) on different topics - recruit and invite experts

- Second meeting (March 27th) on Fast Simulation
 - ✓ GeantV team will present ideas on embedded Fast Sim framework with automated mechanism for fast and precise tuning, and ML techniques to replace complex physics algorithms
 - ✓ ATLAS and CMS are also scheduled to report.
 - Neutrinos (Laura Fields): DUNE only experiment with fast MC, developed for the reason that they do not have a working reconstruction
- Third meeting (April) on Hadronic Physics, Fourth meeting ...

John Harvey and Daniel Elvira to discuss organization of simulation section writing next week (last week of March)

Material

San Diego workshop, first meeting on Computing Performance (2/27/2017), second meeting on Fast Sim (3/27/2017)

San Diego Simulation and summary sessions

https://indico.cern.ch/event/570249/sessions/217045/#20170124 (Simulation session)

https://indico.cern.ch/event/570249/sessions/214768/#20170126
(Summary)

Meeting on Computing Performance

https://indico.cern.ch/event/615703/

Upcoming meetings material in same parent indico url