

6-D Cooling

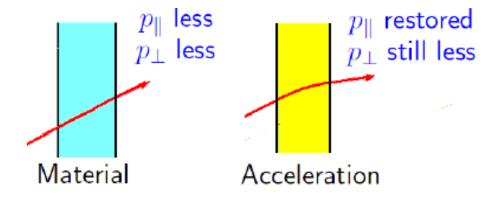
Tom Roberts *Muons, Inc.*

Muon Accelerator Program Review Fermilab, August 24, 2010

Outline

- Why Cooling is Needed
- How Ionization Cooling Works
- Simulation Programs
- Overview of the Cooling Subsystem
- 6-D Cooling
 - Guggenheim
 - Helical Cooling Channel
 - Helical FOFO Snake
 - Comparison of Techniques
- Down Selection (FY12)
- Design and Simulation Level 2 Cooling Tasks
- Milestones
- Cooling R&D Issues
- Why We Believe We Will be Successful

Why Cooling is Needed

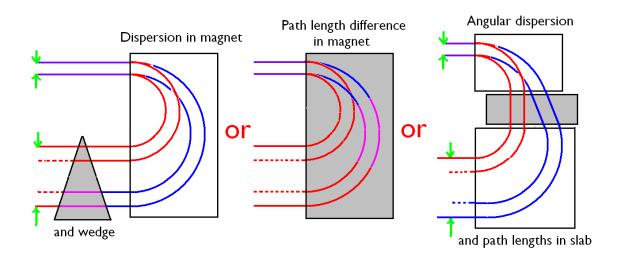

- The muon beam is a <u>tertiary</u> beam generated by the decays of secondary pions.
- The initial muon beam is huge: enormous transverse emittances and a very large momentum spread.
- It is infeasible to accelerate such a large beam to TeV.
- To obtain adequate luminosity, the normalized 6-D emittance must be reduced by roughly 10⁶.
- We call this reduction in emittance "cooling"; it is directly analogous to thermodynamic cooling.

Muons, How Ionization Cooling Works **Basics**

By alternating absorbers with acceleration, the p₁ of each particle can be reduced:

- This is inherently a 2-D process in {x',y'} (={dx/dz,dy/dz}); it operates in the 4-D transverse phase space.
- Energy loss with re-acceleration cools the beam, multiple scattering heats it – need low-Z absorber (H₂, LiH, ...).

How Ionization Cooling Works Basics


- Liouville's theorem is not violated: the electrons in the absorber are heated (but they aren't part of the beam).
- It takes many cooling cells to achieve the 10⁶ emittance reduction required.
- The channel must be designed to partition the emittance reduction into all 6 dimensions {x,x',y,y',dt,dp/p}.

How Ionization Cooling Works Partitioning the Cooling

- Re-partitioning the cooling in the transverse dimensions merely requires a change in focusing of the beam.
- Partitioning cooling to the longitudinal dimension requires emittance exchange:

Reduced Longitudinal emittance, increased transverse emittance.

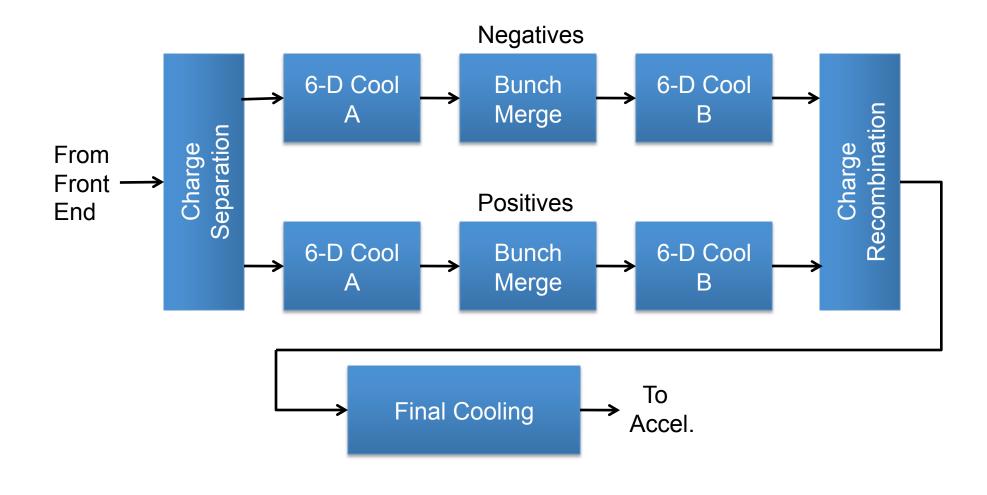
Dispersion is arranged so higher momentum particles have a longer path in the absorber.

 Straggling and the variation of dE/dx with energy contribute to longitudinal heating of the beam.

How Ionization Cooling Works Summary

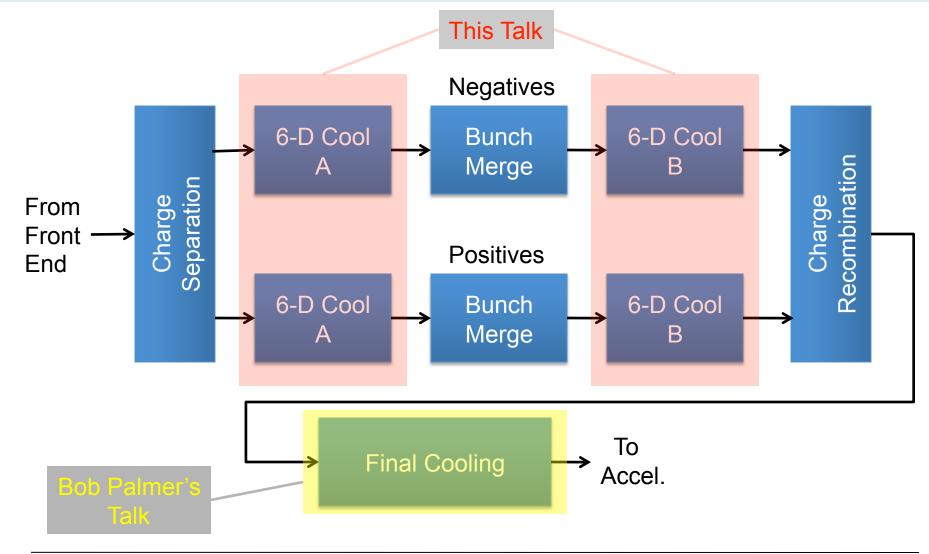
- The 6-D cooling channels below differ in how they arrange the dispersion, absorbers, and focusing to re-partition the cooling among the 6 dimensions.
- All use a helical path, as that is the best way to maintain transverse focusing and to provide the dispersion necessary for the emittance exchange.

Simulation Programs



- Muon cooling requires tracking particles through matter, which standard accelerator design codes do not support.
- We have developed two simulation programs that do:
 - ICOOL
 - Primary author: Rick Fernow
 - Fortran, with portions from Geant3
 - https://pubweb.bnl.gov/~fernow/icool/
 - G4beamline
 - Primary author: Tom Roberts
 - C++, based on Geant4
 - http://g4beamline.muonsinc.com
- As muon cooling is new technology, our plans include maintaining both programs and using them to evaluate our designs.
- Other programs may be used as appropriate.

Overview of the Cooling Subsystem – Current Baseline



Overview of the Cooling Subsystem – Current Baseline

Overview of the Cooling Subsystem

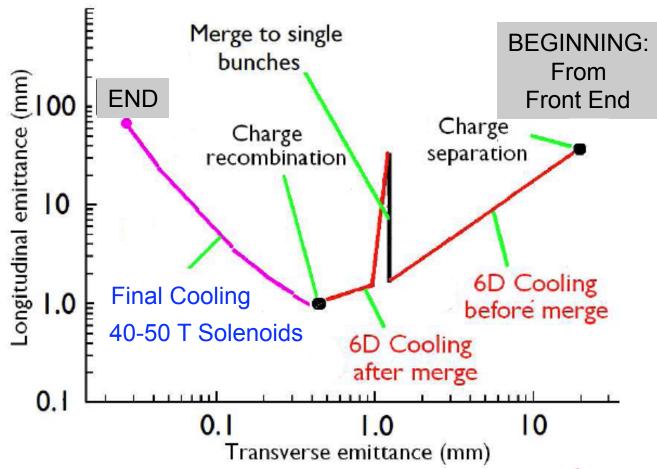
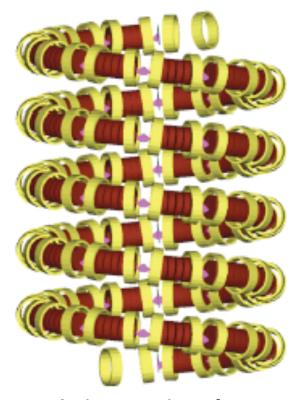



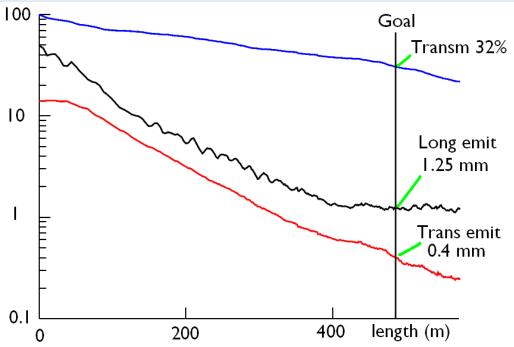
Figure credit: R. Palmer

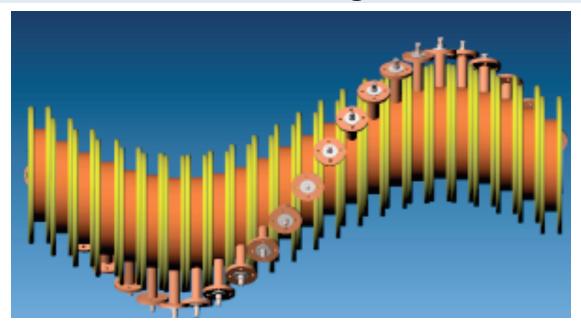
6-D Cooling Guggenheim

A short section of a Guggenheim cooling channel.

- Basically a cooling ring stretched out vertically to simplify extraction and injection; also reduces heating power in absorbers (from multiple turns).
- Lumped liquid hydrogen absorbers (pink), or LiH
- Vacuum RF cavities (dark red)
- Solenoid magnets, inclined to force the beam to follow the helix (yellow)

6-D Cooling Guggenheim




Figure credit: R. Palmer

- ICOOL simulations of a tapered Guggenheim cooling channel.
- Overall transmission is 32%.

6-D Cooling Helical Cooling Channel

A short section of a Helical Cooling Channel; outer solenoid not shown.

- Continuous high-pressure hydrogen gas absorber
- Short solenoids (green) in "helical solenoid" configuration give solenoid, helical dipole, and helical quadrupole fields
- Integrated high-pressure RF cavities (orange)
- Pressure windows only at beginning and end

6-D Cooling Helical Cooling Channel

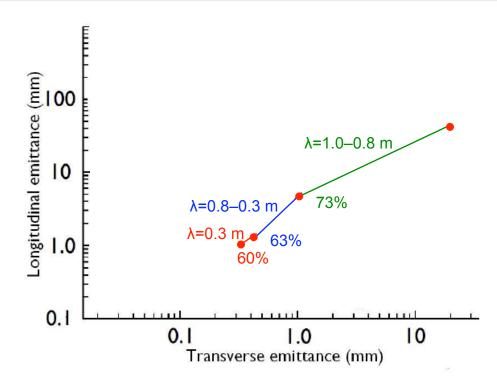


Figure credit: K. Yonehara and T. Roberts

- G4beamline simulation of three tapered helical cooling channels.
- Overall transmission is 60%.


6-D Cooling Helical FOFO Snake

alternating solenoids

absorbers

RF cavities

A short section of a Helical FOFO Snake.

- Basically a linear channel with tilted solenoids to give a shallow helix
- Lumped liquid hydrogen absorbers
- Vacuum RF cavities
- Can cool both positives and negatives

MAP Review - 6-D Cooling - Tom Roberts

6-D Cooling Helical FOFO Snake

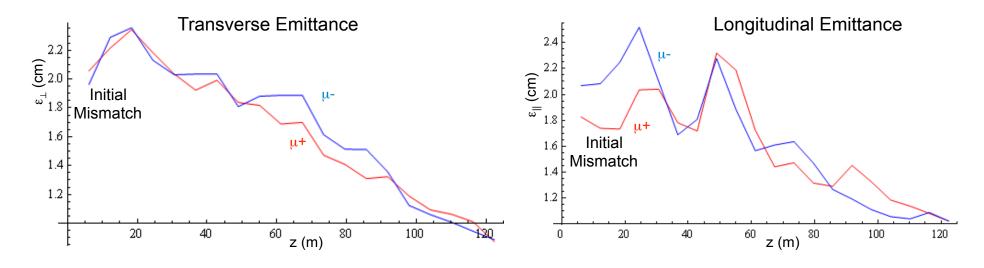


Figure credit: Y. Alexahin

- Simulation results for the helical FOFO snake.
- Transmission after 100 meters is about 60%.

6-D Cooling Comparison of Techniques

	Guggenheim	Helical Cooling Channel	Helical FOFO Snake
Absorber	Lumped liquid H ₂ or LiH wedge	Continuous high- pressure gas H ₂	Lumped liquid H ₂
RF Cavities	Vacuum with Be Windows	High-pressure gas, Be Windows	Vacuum with Be Windows
Magnets	Tilted Solenoids	Helical Solenoid	Tilted Solenoids
Helix ratio: radius / period	Large, >>1, almost a ring	Moderate, ~0.2	Small, <<1, almost straight
Can achieve low emittance to feed into final cooling	Yes	Yes	No
Can cool both charges	No	No	Yes
Have initial simulations	Yes	Yes	Yes

Down Selection (FY12)

- At present we have three viable 6-D cooling techniques.
- In FY12 we will have enough information to "down-select" and determine the actual cooling subsystem to be used in the Design Feasibility Study Report.
- Our current task is to evaluate the possibilities and collect all necessary information to make an informed choice.
- We expect the selection to be of a complete cooling configuration; multiple techniques may be involved.

Down Selection (FY12)

- Indeed, even the overall block diagram is subject to selection:
 - At present, it seem likely that a helical FOFO snake will come first, before the charge separation.
 - That may or may not be sufficient to go directly into the bunch merge.
 - The choice for Final Cooling might require the charge recombination to come after final cooling.
- The selection for cooling can be affected by similar down-selections in the Front End and in Technology Development (RF).

Design and Simulation Level 2 Cooling Tasks

- Develop approach for comparing, assessing, and selecting cooling techniques
- 2. 6D Cooling
- 3. Final Cooling
- Auxiliary Components (charge separation, bunch merging, charge recombination)
- 5. Simulation Code Development (ICOOL, G4beamline, ...)
- Target-to-accelerator simulation of Front End and Cooling
- 7. RF Systems Simulations
- 8. DFS Report preparation

Milestones

Date	Milestone	Deliverable
FY12	specify cooling initial configuration	MAP Review, Design Report
FY14	finish D&S for Interim MC DFS report finish D&S for Final IDS-NF RDR report	Formal Report Formal Report
FY15	provide specifications & parts count for MC costing	Design Report
FY16	provide description of remaining MC R&D items finish D&S for Final MC DFS report	Design Report Formal Report

Cooling R&D Issues

Simulation Issues

- Match the different sections, with acceptable emittance growth and losses.
- Evaluate space charge effects (primarily final cooling).
- Analyze, understand, and evaluate collective effects in the absorbers (primarily final cooling).
 - Plasma effects (ionization electrons)
 - Dielectric polarization effects
 - Effect on space charge, macro-particle interactions, etc.

Design Issues

•	High RF gradients	(See Alan Bross talk)
•	High-field magnets	(See Alan Bross talk)
•	High beam heat load in absorbers	(needs engineering)
•	High beam loading in RF cavities	(needs engineering)

Why We Believe We Will be Successful

- We already have considerable experience in designing cooling channels:
 - We have multiple techniques for both 6-D and final cooling, and at least one for each of the auxiliary components.
 - We have initial simulations of each technique, indicating they can be put together as shown.
- We have a team of experts already involved.
- The primary developers of the simulation tools we are using are already part of the team.
- MAP is the culmination of more than 15 years of effort we are motivated to succeed!