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We know pretty well the QQbar potential...

What is known about the QQQ
potential and why it Is Intferestinge

We have a richer color and dynomicoljs’rruc’rure

e Color degrees of freedom i o Sdin]
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e Two Independent relative °
distances k

IN perturbation theory the tree level has been known
In all color channels, e.g. for the singlet
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The QQQ potential is calculated on the lattice
INn The singlet channel with a particular interest
IN the large distance
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The QQQ potential is calculated on the lattice
INn The singlet channel with a particular interest
IN the large distance
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R a1 area law: 3 flux tubes joining in

one point-> three body forces
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The precise behaviour of the QQQ potential is
still object of investigation on the lattice
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the QQQ potential to see up to which point
perturbation theory is applicable In this case

and how is the fransition to three body regime

--> we need 1o calculate higher order
perturbative corrections

this Is iImportant also for phenomenological applications
to the calculations of the friple heavy baryons mass

Bjorken [4]

This work

Vijande et al [24]

8.200 = 0.090
4.925 4 0.090
14.760 £ 0.180
11.480 &= 0.120

7.98 £ 0.07
4.76 = 0.06
14.37 £ 0.08
11.19 + 0.08

Yu Jia, hep-ph/0607290 with free level perturbbative potential
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Interesting at finite temperature
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The Calculation of the QQQ at NA2LO

e Consider 74 K AQCD

e Construct pNRQCD for QQQ by integrating out the hard scale m
and the soft scaler_g
e The (weakly coupled) EFT for ()()() baryons contains:

q, gluons, (QQQ)1 = S, (QRQ)s = (O*', ..., 0"%),
(QRQ)s = (0°',...,0%%)and (QQQ) 10 = (A', ..., A").

LoNRQCD = /d3 d3’ ST 15’0 S+0T zDOO
1!
‘|‘A]L ZZDO A‘|‘O<m ‘|‘£gauge+£lq

V VA VS Wilson coefficients to be calculated in the
S O O matching
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Matching the QQQ potential
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the potential is a sum of two-and three-body contributions

V(r) =) Va(ry) + Va(t)

qg=1
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QQQ potential at NLO in Coulomb gauge

O Esponentiation

1 (CH W )

e, (5 e C S

2
Iy

2!

Ve + ...

T
|
|

°

- .

@
|
|
|
. >

O The potentialis still two body




QQQ potential at NLO




QQQ potential at NLO

47

Zfo pdis L) { Rauir) (2807 + a1)

’rq’




QQQ potential at NLO

Zfo O‘Ms (rg) { | ap75(Tq) (250v+a1)}

’rq’ Am

31 20
al — —CA Fs ?Tan




QQQ potential at NLO

Z 0T [y D g5 o)

]I'q] 47 /
\ 31 20

same colour factor as the a1 = 5 Ca— 5 Trny
LO one




QQQ potential at NLO

Zfo aMS (rg) { | ap75(Tq) (260v+a1)}

’rq’ Am /
\ 31 20

same colour factor as the a1 = 5 Ca— o Trny
E&rome

at NLO QQbar and QQQ potential only differ
for the overall colour representation but the
effective coupling of the potential is the same

v (1/Irq]) = as(1/Ir) |1+ = (28078 + a1)|
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0O VA3body comes from diagrams with gluons attfached to
all 3 quark lines

Many classes of diagrams

The Coulomb gauge is again very useful
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Non-abelian zero diagrams




Non-abelian zero diagrams

O Whatis left?
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the 3body potential in configuration space can be
calculated numerically
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Let us consider some simple geometries

[sosceles geometry in a plane Iro| = |r3| =7 and ©5 - T3 = cos 6.

cy(0)

G0 - o

Ikl |-

10

0.8

attractive conftribution to the poTénTioI
0.6 -

wedk dependence on theta
3body potential

may indicate the onset of a smooth fransition towards the
long distance Y shaped three body potential seen in the
lattice datae
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Let us consider some simple geometries

0 = 7/3: planar equilateral geometry

In the equilateral case, we have cy(m/3) ~ 1.377.

We can compare the relative magnitude of the
three-body contribution to the tree level potential.
For the singlet

v?&O,;C(T) b CH(W/S) CM2(1/7“) ~ O‘?(l/r)‘

POy 2.90

using as at one loop, VJ°(r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still hoIds
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Let us consider some simple geometries

Generic geometry
In the most general geometry the three body potential
depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified
(B.1) Planar lattice geometry with two fixed quarks

In Fig 10, we plot the three-body potential obtained by placing the three quarks in a plane
(x,y), fixing the position of the first quark in (0, 0), the second one in (1,0) and moving the
third one in the lattice (0.54+0.125n,,0.125n,) with n, € {0,1,...,20} and n,, € {0, 1, ..., 24}.

The plot clearly shows the dependence on the geometry at fixed L, however, the dependence

1 s S S S \\\\\\\\\\\\\\\\\\\\\\\L
is weaker than in the two-body case. 15 . : : : Ayt i

~0.4 i

0
-0.8
1o
il

~14}

FIG. 10: The normalized three-body potential, Vi4(L, ...)/(—fx(C)as), plotted as function of L




€1 US consiaer some simpile geomeilries
Generic geometry

In the most general geometry the three body potential
depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified

Three-dimensional lattice geometry with the three quarks moving along the axes
28] T. T. Takahashi and H. Suganuma, Phys. Rev. D70, 074506 (2004), hep-lat/0409105.

In the lattice calculation of Ref. [28], the three quarks were located along the axes of a
three-dimensional lattice, namely at (n,,0,0), (0,n,,0) and (0,0,n,), with n, € {0,1, ...,6}
and n,,n, € {1,...,6}. For the sake of comparison, we consider the same geometry and plot
the corresponding three-body potential in Fig. 11. The plot shows a weak dependence on

the geometry: much weaker than in the two-body case, but also somewhat weaker than in

the geometry considered in (B.1). o 4 p 2 10 12 14

® o o o D° AL 1 E
3 A - "..“:'.. %
® o :: .:. ..

FIG. 11: The normalized three-body potential, V% (L, ...)/(— fu(C)a2), plotted as function of L
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Full QQQ Potential atf NA2LO
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Full QQQ Potential at NA2LO
two and three bodies parts
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M = [roly/2(1—2) + [rs| /5T — 9).
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Full QQ antitriplet potential at NA2LO
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The complete NNLO QQQ singlet and QQ
antitriplet static potential has been calculated

The first contribution of the three body type
has been idenftified in perturlbation theory at
NNLO and its impact has been studied

These results are relevant for the study of the fransition
region from the perturbative 1o the nonperturbative
regime where the QQQ geometry is adding a new

element with respect to the QQbar case, for
phenomenological applications at zero and finite
temperafure

These results open the way to the study of
renormalization group and ultrasoft corrections for the
QQQ static energy (as it has been done for the
dgbar case) and fo the study of the gluelumps for
QQQ




