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in  perturbation theory the tree level has been known 
in all color channels, e.g. for the singlet 

The color part of the amplitude has been factored in the color coefficient f0
q (C). This

factor is then defined as
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where each generator T a connects the initial and final indices of one of the two lines

involved in the exchange i, while δspec is a Kronecker symbol over the initial and final

indices of the spectator line. For example if the spectator quark is labeled by the indices

k and k� then δspec = δkk� and we have T a
ii� and T a

jj� . It should be noted that, for

C = S, ∆, C = C, whereas for C = O the color factor f is indeed a matrix and C = O†.
The denominator yields the normalization of the color tensor as in Eq. (2.55).

Inserting the result (2.72) in Eq. (2.71) we thus obtain for the tree-level potential

V
0
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We can now start computing the tree-level color factors: the singlet can be easily cal-

culated using the general expression of Eq. (2.57) for a generalized “baryon” composed

of NC static quarks. Since this tensor is totally antisymmetric the factors f0
q (S) are all

equal. One can show from tensor algebra that the product of two Levi-Civita tensors

can be expressed as a determinant of Kronecker δ-symbols in the following way:
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Using this property we obtain the color factor

f
0
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= −(NC − 2)!
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CF Tr [IC ] = −NC + 1

2NC
, (2.76)

because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we

obtain the final result. The singlet tree-level potential is then

Vs(r) = −NC + 1

2NC
αs
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, (2.77)

where the sum runs over all n = NC(NC−1)/2 possible one-gluon exchanges, i.e. quark-

quark interactions. For the specific case NC = 3 the potential is simply [39]

Vs(r) = −2
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, (2.78)
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The QQQ potential is calculated on the lattice 
in the singlet channel  with a particular interest 

in the large distance 

7

state energies induced by three static quarks in a color-
singlet state. We note that the lattice results at β = 5.8
and β = 6.0 well coincide in the physical unit besides an
irrelevant overall constant. The gluonic excitation energy
is expressed as ∆E3Q ≡ V e.s.

3Q − V g.s.
3Q .
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FIG. 4: The lattice QCD results of the ground-state 3Q po-
tential V g.s.

3Q (open circles) and the 1st excited-state 3Q po-
tential V e.s.

3Q (filled circles) plotted against Lmin, the minimal
total length of flux-tubes linking the three quarks. The lattice
results at β = 5.8 and β = 6.0 well coincide in the physical
unit besides an irrelevant overall constant.

It is worth mentioning that the absolute values of the
potentials cannot be determined in lattice QCD without
ambiguity. In fact, the energy of the 3Q system measured
with the 3Q Wilson loop contains an irrelevant constant
term C3Q, which corresponds to the self-energies of the
three static quarks under the lattice cutoff a−1 and di-
verges in the continuum limit as a → 0 [20, 21]. However,
the energy gap between any pair of two states does not
suffer from the ambiguity and has physical meaning. In
particular, the energy gap ∆E3Q ≡ V e.s.

3Q −V g.s.
3Q between

the ground-state and excited-state potentials has definite
physical meaning as the lowest gluonic excitation energy,
and can be determined in lattice QCD without the am-
biguity.

Figure 5 shows the gluonic excitation energy ∆E3Q ≡
V e.s.

3Q −V g.s.
3Q as the function of Lmin. As a nontrivial fact,

∆E3Q is almost reproduced with a single-valued func-
tion of Lmin, the minimal total length of the flux-tube
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FIG. 5: The lattice QCD results of the gluonic excitation
energy ∆E3Q ≡ V g.s.

3Q −V e.s.
3Q plotted against Lmin, the minimal

total length of flux-tubes linking the three quarks. The results
at β = 5.8 and β = 6.0 well coincide in the physical unit.

in the 3Q system. This implies that the gluonic excita-
tion energy ∆E3Q is controlled by the whole size of the
3Q system. This will be discussed in detail in the next
section.

V. FUNCTIONAL FORM OF GLUONIC
EXCITATION ENERGY

In this section, we investigate the functional form of the
gluonic excitation energy ∆E3Q(r1, r2, r3) in the static
3Q system in terms of the 3Q location ri (i=1,2,3) using
the lattice QCD data for ∆E3Q at β=5.8 and 6.0.

The 3Q static potential V3Q generally depends on the
three independent variables which indicate the 3Q trian-
gle, e.g., {a, b, c} for the three sides of the 3Q triangle,
while the Q-Q̄ potential VQQ̄ depends only on the rela-
tive distance r. Therefore, the search for the functional
form of V e.s.

3Q or ∆E3Q is much more difficult than in the
Q-Q̄ case.

Furthermore, unlike the ground-state 3Q potential
V g.s.

3Q , there are no clear theoretical candidates for the
functional form of the excited-state 3Q potential V e.s.

3Q or
the gluonic excitation energy ∆E3Q. Hence, it is rather

Takahashi Suganuma PRD70 (2002)
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in the 3Q system. This implies that the gluonic excita-
tion energy ∆E3Q is controlled by the whole size of the
3Q system. This will be discussed in detail in the next
section.

V. FUNCTIONAL FORM OF GLUONIC
EXCITATION ENERGY

In this section, we investigate the functional form of the
gluonic excitation energy ∆E3Q(r1, r2, r3) in the static
3Q system in terms of the 3Q location ri (i=1,2,3) using
the lattice QCD data for ∆E3Q at β=5.8 and 6.0.

The 3Q static potential V3Q generally depends on the
three independent variables which indicate the 3Q trian-
gle, e.g., {a, b, c} for the three sides of the 3Q triangle,
while the Q-Q̄ potential VQQ̄ depends only on the rela-
tive distance r. Therefore, the search for the functional
form of V e.s.

3Q or ∆E3Q is much more difficult than in the
Q-Q̄ case.

Furthermore, unlike the ground-state 3Q potential
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3Q , there are no clear theoretical candidates for the
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The precise behaviour of the  QQQ potential is  
still  object of investigation on the lattice 

2

still holds. It is derived from a model of confine-
ment by center vortices using a beautiful topolog-
ical argument [3]. The Y -ansatz predicts instead
Vqqq ∝ σqq̄LY , where LY is the minimal length
of the 3 flux tubes necessary to join the 3 quarks
at the so-called Steiner point. It is derived from
strong coupling arguments [4], and is consistent
with the dual superconductivity confinement sce-
nario [5]. Since LY > L∆

2 for all 3-quark geome-
tries, the Y -ansatz predicts a steeper potential

V Y
qqq("r1,"r2,"r3) = V ∆

qqq("r1,"r2,"r3)+σqq̄(LY −
L∆

2
)(2)

with V ∆
qqq as per Eq.(1). Both ansätze are con-

strained to reproduce the diquark limit "rj → "rk,
Vqqq("ri,"rj ,"rk) → Vqq̄("ri,"rj) exactly, and there-
fore contain no free parameter once Vqq̄ is given.
In this respect we differ from the analogous lat-
tice study of [6], where σqq̄ and σqqq are fitted
separately and therefore not strictly equal.

2. Technical refinements

Because the difference between the ∆- and the
Y -ansätze is very small (1 ≤ LY

L∆/2 ≤ 2
√

3
), high

accuracy in the determination of Vqqq is manda-
tory. The main difficulty at large quark sepa-
ration is the contribution of excited qqq states.
Besides smearing the spatial links as in [6], we
use three additional techniques to control these
systematic errors. (i) We form a variational basis
with different junction locations (x, y in Fig. 1).
(ii) We use multihit for the timelike links. (iii)
We generalize the multilevel algorithm of [7], orig-
inally proposed for Polyakov loop correlators, to
baryonic Wilson loops. This method provides a
variance reduction exponential in T , which allows
us to extract the potential from longer loops, with
crucially improved filtering of excited states.

3. Results

A sample of current results based on 160 ana-
lyzed 163×32 configurations at β = 5.8 and 6.0 is
shown in Fig. 2 (3 quarks in an equilateral trian-
gle). They are compatible with our earlier mea-
surements [2], but the reduced errors now clearly
show that neither ansatz gives a proper descrip-
tion of the potential. It approaches the ∆-ansatz

Figure 2. Static potential Vqqq vs quark separa-
tion at β = 5.8 and 6.0. Also shown are the ∆-
and Y -predictions Eqs.(1) and (2).

at short distances as expected, but seems to rise
faster, perhaps as fast as the Y -ansatz, at large
distances. Furthermore, the larger the quark sep-
aration, the more our variational groundstate fa-
vors junctions located near the Steiner point.

To elucidate the asymptotics of the potential,
we turned to the 3-state Potts model. This toy
model preserves the center degrees of freedom
of SU(3) and is thus more likely to agree with
center-vortex-based predictions of the ∆-ansatz.
In this model, we measured the 3-spin correla-
tion, after adjusting the coupling to match the
βSU(3) = 6.0 correlation length. High-precision
cluster Monte Carlo results were obtained for
multiple 3-spin geometries, in 2d and 3d. In all
cases, the 3-spin correlation behaved just like in
SU(3), falling “in-between” the ∆- and the Y -
ansätze. But we could establish that the poten-
tial was rising asymptotically ∝ LY . Large sep-
arations are required to see this. An example is
shown in Fig. 3, where the change in action den-
sity caused by the 3 sources (a) is compared with

hep-lat/0209062
equilateral geometry, 

d_qq =qq distance
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perturbative corrections

 this is important also for phenomenological applications 
to the calculations of the triple heavy baryons mass

TABLE I: Predictions for the masses of lowest-lying triply-heavy baryons from various work. All

the masses are given in unit of GeV. In the entries for Ωbcc and Ωbbc, the JP = 1
2
+

and J = 3
2
+

partners are not distinguished since the hyperfine splitting has been neglected.

Bjorken [4] This work Vijande et al [24]

Ωbcc 8.200 ± 0.090 7.98 ± 0.07 –

Ωccc 4.925 ± 0.090 4.76 ± 0.06 4.632

Ωbbb 14.760 ± 0.180 14.37 ± 0.08 –

Ωbbc 11.480 ± 0.120 11.19 ± 0.08 –

To make quantitative estimates for the baryon masses, we need specify at which scale the

strong coupling constant should be evaluated. In principle, physical observables should be

independent of the choice of µ, once the all-order perturbative expansion has been worked

out. In practice, since what we have so far is only the leading order perturbative correction,

our predictions are unavoidably sensitive to the choice of µ. To reduce the scale ambiguity

optimally, we should take µ in proximity to the characteristic momentum transfer scale in

a given QQQ state.

It is an empirical fact that the typical momentum transfer scale in J/ψ, Bc and Υ is

about 0.9, 1.2 and 1.5 GeV, respectively. One might expect that the corresponding scale in

the QQQ states would be considerably lower than that in their quarkonium counterparts.

Encouragingly, as we have learned in Sec. III, the effective color strength between a pair of

quarks gets enhanced due to the presence of the third quark. As a result, the actual wave

function is more compressed than naively expected. Therefore, it is not unreasonable to

choose the scale for a QQQ state close to the one typically taken for its QQ counterpart.

We assign µ = 1.2 GeV in the mass formula for Ωbcc, Ωbbb and Ωbbc, with a corresponding

αs = 0.43; for Ωccc, we take µ = 0.9 GeV, with αs = 0.59. To compensate for our ignorance

in uncalculated higher order corrections, we estimate the uncertainty in each mass prediction

to be the leading O(α2
s) correction multiplied by another factor of αs.

Our predictions to the masses of various QQQ ground states, together with those made

by other authors [4, 24], which employ some phenomenological confinement potentials, are

compiled in Table I. The apparent discrepancy between the predictions of the Ωccc mass

27

Yu Jia, hep-ph/0607290  with tree level perturbative potential 
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FIG. 3: Free energies in different color channels obtained on
a 323 × 8 lattice at T/Tc = 6 from simulations in quenched
QCD.

which runs between n ≤ m < Nσ

2 for every n. Therefore
for every n we obtain one equilateral (n = m) and several
isosceles (n < m < Nσ

2 ) triangles. We start with n = 1

and repeat the procedure until n = Nσ

2 −1. We apply this
method in both directions of all three spatial dimensions
before sweeping Q1 over the entire spatial lattice. We will
denote the configuration averages of the correlation func-
tions (10) - (13) and (14) by Cs

QQQ with s = 1, 8, 10, av
from now on.

C. Renormalization

We construct all correlation functions using renor-
malised thermal Wilson lines Lren(T ), which are obtained
from the bare ones calculated on lattices with temporal
extend Nτ through multiplicative renormalisation,

Lren(T ) =
(

Z(g2)
)Nτ L(g2, Nτ ), (28)

where Z(g2) is the multiplicative renormalisation con-
stant determined in [15], g is the bare coupling and Nτ is
the temporal extent of the lattice L is calculated on. The
renormalization constants only depend on the bare cou-
pling [24, 25] (and in addition on the bare quark masses
in full QCD) and furthermore are equivalent at zero and
finite temperature [26]. The renormalised three point
correlation function of the thermal Wilson lines, Cren(T ),
is then obtained from the bare one, CQQQ(g2, Nτ ), by

Cren
QQQ(T ) =

(

Z(g2)
)3Nτ CQQQ(g2, Nτ ). (29)

V. RESULTS IN PURE GAUGE

In this section we will analyze the behavior of three
quark free energies in different color channels above Tc.
We compare results with the perturbative expressions ob-
tained in section III as well as with results obtained for

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

F
1
QQQ(R,T)/!

1/2

R!
1/2

3(F
—

3
QQ(R,T)-FQ(T))/!

1/2

T/Tc
1.005
1.031
1.149
1.684
3.000
6.000

FIG. 4: F 1
QQQ(R,T ) and 3

`

F 3
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above Tc

versus R, the edge length R of the equilateral triangles and
QQ-distance, respectively.

QQ-systems in different color channels. Data for the QQ
free energies have been taken from [14]. Below Tc we
examine the string shape of the baryonic system and its
structure in the different color channels.

A. Color Channels

In fig. 3 we show the free energies of three quark sys-
tems in different color channels and the average free en-
ergy for the QQQ-system for equilateral triangles of edge
length R calculated on a 323 × 8 lattice at T/Tc = 6.
One can see clearly, that the singlet is strongly, the octet
weaker attractive and the decuplet repulsive in agree-
ment with the perturbative findings presented in sec. III.
For large R at a given temperature, all free energies in
the different color channels approach a common value,
i. e. the three quarks are screened independently of their
color orientation. The singlet free energy becomes tem-
perature independent at small distances and coincides
with the baryonic T = 0 potential, VQQQ(R), (see also
fig. 4), which is related to the quark-antiquark poten-
tial at vanishing temperature by the ratio of the differ-
ent Casimir operators, i. e. VQQQ(R) = 3

2VQQ̄(R) for
RΛQCD $ 1. We obtain similiar results for all other
temperatures above Tc. We will discuss the screening
of octet and decuplet free energies at small distances in
sec. VII.

B. Free energies of equilateral geometries above Tc

We now compare the free energies of the QQQ-system
with the free energy of the QQ-system above Tc. In fig. 4
we show F 1

QQQ(R, T ) and 3F 3̄
QQ(R, T ) − 3FQ(T ) versus

the edge length R of the equilateral triangles and the QQ
distance, respectively. According to (21) the second term
is expected to be equal to the QQQ-singlet free energy at
least at small distances, where genuine three body forces

Hübner Kaczmarek Karsch Vogt PRD77 (2008)

T = 6TC

lattice 
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energy at 
finite T
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up to two 

loops:

a

C∗ C

b

r = r1, r2, r3

condition (1) may be rewritten as

VC(r) = lim
TW→∞

i

TW
ln

�0|Cu W Cv†|0�
Cu
mnoC

v†
mno

, (8)

where we have kept in the denominator a colour tensor normalization factor (cf. Eq. (A5)).

It is convenient to define

�0|Cu W Cv†|0�
Cu
mnoC

v†
mno

= 1 +M(0)
(C, r) +M(1)

(C, r) +M(2)
(C, r) + . . . , (9)

with the quantities M(n) encoding all contributions of order g2n+2 ∼ αn+1
s for a given colour

representation C. Analogously we may write

VC(r) = V (0)
C (r) + V (1)

C (r) + V (2)
C (r) + . . . , (10)

where V (n)
C (r) encodes all contributions of order g2n+2 to the potential. From Eqs. (8), (9)

and (10), the order by order matching conditions for the potential read

V (0)
C (r) = lim

TW→∞

i

TW
M(0)

(C, r), (11)

V (1)
C (r) = lim

TW→∞

i

TW

�
M(1)

(C, r)− 1

2
M(0) 2

(C, r)
�
, (12)

V (2)
C (r) = lim

TW→∞

i

TW

�
M(2)

(C, r)−M(0)
(C, r)M(1)

(C, r) + 1

3
M(0) 3

(C, r)
�
, (13)

· · · · · · .

Note that the subtraction terms, M(0) 2 ∼ T 2
W , M(0)M(1) ∼ T 2

W and M(0) 3 ∼ T 3
W , are diver-

gent in the TW → ∞ limit. They cancel against divergences in M(1) and M(2). Canceling

the divergences may be interpreted as reconstructing the exponential exp (−iVC(r)TW ) in

the matching condition (1). For this reason, the procedure of verifying the finiteness of the

limits (12), (13), ... is often referred to as verifying the potential exponentiation.

III. THE STATIC POTENTIAL AT LO

To set up the notation and to discuss the octet mixing, we start by calculating the three-

quark static potential at LO, i.e. V (0)
C . The calculation can be split into two steps: the

computation of the amplitudes and the calculation of the colour factors, which will differ for

each potential. Throughout the paper we choose the Coulomb gauge for the calculation of

8
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.

This potential has two interesting properties: firstly we can immediately notice that the
color factor is equal to the well-known [41] color factor of the antisymmetric antitriplet
quark-quark potential, that is −2/3 for NC = 3. This should not be surprising, since we
can always consider the limit where all but two quarks are put at infinite distance: we
should expect this limit to reproduce one of the two quark-quark potentials, either the
antisymmetric antitriplet or the symmetric sextet. Since the singlet is antisymmetric one
should expect to recover the antisymmetric triplet and this is indeed the case. Secondly
we can compare this result with the singlet quark-antiquark potential Eq. (2.23) and
observe that the singlet mesonic potential is NC−1 times the singlet baryonic potential.
It has been a long-known result that the quark-quark potential in an ordinary baryon
(NC = 3) is half of the quark-antiquark potential: we can now affirm that this “1

2 rule”
is a specific case of a more general “NC − 1 rule”. This rule has a deeper explanation
in group representation theory: if we collapse NC − 1 quarks in the same position the
remaining one will “see” (NC − 1) times the quark-quark potential, corresponding to
the quark-antiquark potential. It can be shown from Young tableaux that the SU(NC)
antisymmetric representation of rank NC − 1 describing a system of NC − 1 quarks with
a totally antisymmetric color state has dimension NC and corresponds to the conjugate
fundamental representation, i.e. the representation describing the antiquark.
The decuplet tree-level factor f0(∆) is, similarly to the singlet, equal for all of the three
distances in r, due to the symmetric nature of the tensor. Using the explicit expression
(2.54) for ∆ and the 8 Gell-Mann matrices one easily obtains that f0(∆) = 1

3
5. The

potential then becomes [39]

Vd(r) =
1
3
αs

�
1

|r1| +
1

|r2| +
1

|r3|

�
. (2.79)

We can notice that the color factor (1
3) correspond to the one for the symmetric sextet

quark-quark potential[41].
The octet tree-level factor is more complicated for two reasons: it is a matrix and it

depends on which lines are involved in the gluon exchange. The tree-level potential can
5This result has been verified with the help of Mathematica for each one of the ten elements of ∆.
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factor is then defined as
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where each generator T a connects the initial and final indices of one of the two lines

involved in the exchange i, while δspec is a Kronecker symbol over the initial and final

indices of the spectator line. For example if the spectator quark is labeled by the indices

k and k� then δspec = δkk� and we have T a
ii� and T a

jj� . It should be noted that, for

C = S, ∆, C = C, whereas for C = O the color factor f is indeed a matrix and C = O†.
The denominator yields the normalization of the color tensor as in Eq. (2.55).

Inserting the result (2.72) in Eq. (2.71) we thus obtain for the tree-level potential
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We can now start computing the tree-level color factors: the singlet can be easily cal-

culated using the general expression of Eq. (2.57) for a generalized “baryon” composed

of NC static quarks. Since this tensor is totally antisymmetric the factors f0
q (S) are all

equal. One can show from tensor algebra that the product of two Levi-Civita tensors

can be expressed as a determinant of Kronecker δ-symbols in the following way:
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Using this property we obtain the color factor
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because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we

obtain the final result. The singlet tree-level potential is then
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where the sum runs over all n = NC(NC−1)/2 possible one-gluon exchanges, i.e. quark-

quark interactions. For the specific case NC = 3 the potential is simply [39]
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.
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The computation of the color factors yields
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where each generator T a connects the initial and final indices of one of the two lines

involved in the exchange i, while δspec is a Kronecker symbol over the initial and final

indices of the spectator line. For example if the spectator quark is labeled by the indices

k and k� then δspec = δkk� and we have T a
ii� and T a

jj� . It should be noted that, for
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We can now start computing the tree-level color factors: the singlet can be easily cal-
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because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we

obtain the final result. The singlet tree-level potential is then
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where the sum runs over all n = NC(NC−1)/2 possible one-gluon exchanges, i.e. quark-

quark interactions. For the specific case NC = 3 the potential is simply [39]
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.

This potential has two interesting properties: firstly we can immediately notice that the
color factor is equal to the well-known [41] color factor of the antisymmetric antitriplet
quark-quark potential, that is −2/3 for NC = 3. This should not be surprising, since we
can always consider the limit where all but two quarks are put at infinite distance: we
should expect this limit to reproduce one of the two quark-quark potentials, either the
antisymmetric antitriplet or the symmetric sextet. Since the singlet is antisymmetric one
should expect to recover the antisymmetric triplet and this is indeed the case. Secondly
we can compare this result with the singlet quark-antiquark potential Eq. (2.23) and
observe that the singlet mesonic potential is NC−1 times the singlet baryonic potential.
It has been a long-known result that the quark-quark potential in an ordinary baryon
(NC = 3) is half of the quark-antiquark potential: we can now affirm that this “1

2 rule”
is a specific case of a more general “NC − 1 rule”. This rule has a deeper explanation
in group representation theory: if we collapse NC − 1 quarks in the same position the
remaining one will “see” (NC − 1) times the quark-quark potential, corresponding to
the quark-antiquark potential. It can be shown from Young tableaux that the SU(NC)
antisymmetric representation of rank NC − 1 describing a system of NC − 1 quarks with
a totally antisymmetric color state has dimension NC and corresponds to the conjugate
fundamental representation, i.e. the representation describing the antiquark.
The decuplet tree-level factor f0(∆) is, similarly to the singlet, equal for all of the three
distances in r, due to the symmetric nature of the tensor. Using the explicit expression
(2.54) for ∆ and the 8 Gell-Mann matrices one easily obtains that f0(∆) = 1

3
5. The

potential then becomes [39]
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We can notice that the color factor (1
3) correspond to the one for the symmetric sextet

quark-quark potential[41].
The octet tree-level factor is more complicated for two reasons: it is a matrix and it

depends on which lines are involved in the gluon exchange. The tree-level potential can
5This result has been verified with the help of Mathematica for each one of the ten elements of ∆.
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because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we

obtain the final result. The singlet tree-level potential is then
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.

This potential has two interesting properties: firstly we can immediately notice that the
color factor is equal to the well-known [41] color factor of the antisymmetric antitriplet
quark-quark potential, that is −2/3 for NC = 3. This should not be surprising, since we
can always consider the limit where all but two quarks are put at infinite distance: we
should expect this limit to reproduce one of the two quark-quark potentials, either the
antisymmetric antitriplet or the symmetric sextet. Since the singlet is antisymmetric one
should expect to recover the antisymmetric triplet and this is indeed the case. Secondly
we can compare this result with the singlet quark-antiquark potential Eq. (2.23) and
observe that the singlet mesonic potential is NC−1 times the singlet baryonic potential.
It has been a long-known result that the quark-quark potential in an ordinary baryon
(NC = 3) is half of the quark-antiquark potential: we can now affirm that this “1

2 rule”
is a specific case of a more general “NC − 1 rule”. This rule has a deeper explanation
in group representation theory: if we collapse NC − 1 quarks in the same position the
remaining one will “see” (NC − 1) times the quark-quark potential, corresponding to
the quark-antiquark potential. It can be shown from Young tableaux that the SU(NC)
antisymmetric representation of rank NC − 1 describing a system of NC − 1 quarks with
a totally antisymmetric color state has dimension NC and corresponds to the conjugate
fundamental representation, i.e. the representation describing the antiquark.
The decuplet tree-level factor f0(∆) is, similarly to the singlet, equal for all of the three
distances in r, due to the symmetric nature of the tensor. Using the explicit expression
(2.54) for ∆ and the 8 Gell-Mann matrices one easily obtains that f0(∆) = 1
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We can notice that the color factor (1
3) correspond to the one for the symmetric sextet

quark-quark potential[41].
The octet tree-level factor is more complicated for two reasons: it is a matrix and it

depends on which lines are involved in the gluon exchange. The tree-level potential can
5This result has been verified with the help of Mathematica for each one of the ten elements of ∆.
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because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we

obtain the final result. The singlet tree-level potential is then
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where the sum runs over all n = NC(NC−1)/2 possible one-gluon exchanges, i.e. quark-
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.

This potential has two interesting properties: firstly we can immediately notice that the
color factor is equal to the well-known [41] color factor of the antisymmetric antitriplet
quark-quark potential, that is −2/3 for NC = 3. This should not be surprising, since we
can always consider the limit where all but two quarks are put at infinite distance: we
should expect this limit to reproduce one of the two quark-quark potentials, either the
antisymmetric antitriplet or the symmetric sextet. Since the singlet is antisymmetric one
should expect to recover the antisymmetric triplet and this is indeed the case. Secondly
we can compare this result with the singlet quark-antiquark potential Eq. (2.23) and
observe that the singlet mesonic potential is NC−1 times the singlet baryonic potential.
It has been a long-known result that the quark-quark potential in an ordinary baryon
(NC = 3) is half of the quark-antiquark potential: we can now affirm that this “1

2 rule”
is a specific case of a more general “NC − 1 rule”. This rule has a deeper explanation
in group representation theory: if we collapse NC − 1 quarks in the same position the
remaining one will “see” (NC − 1) times the quark-quark potential, corresponding to
the quark-antiquark potential. It can be shown from Young tableaux that the SU(NC)
antisymmetric representation of rank NC − 1 describing a system of NC − 1 quarks with
a totally antisymmetric color state has dimension NC and corresponds to the conjugate
fundamental representation, i.e. the representation describing the antiquark.
The decuplet tree-level factor f0(∆) is, similarly to the singlet, equal for all of the three
distances in r, due to the symmetric nature of the tensor. Using the explicit expression
(2.54) for ∆ and the 8 Gell-Mann matrices one easily obtains that f0(∆) = 1
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We can notice that the color factor (1
3) correspond to the one for the symmetric sextet

quark-quark potential[41].
The octet tree-level factor is more complicated for two reasons: it is a matrix and it

depends on which lines are involved in the gluon exchange. The tree-level potential can
5This result has been verified with the help of Mathematica for each one of the ten elements of ∆.
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because the tree-level gluon exchange involves only two quark lines, leaving the remaining

NC − 2 untouched. This correspond to contracting NC − 2 indices in Eq. (2.75), thus

obtaining (NC − 2)! (δimδjn − δinδjm). The first term yields zero, since the generators

are traceless, whereas the second yields NCCF ; using the explicit expression for CF we
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Figure 2.9: A diagram contributing to the mixing of the two octets at the tree-level.

This potential has two interesting properties: firstly we can immediately notice that the
color factor is equal to the well-known [41] color factor of the antisymmetric antitriplet
quark-quark potential, that is −2/3 for NC = 3. This should not be surprising, since we
can always consider the limit where all but two quarks are put at infinite distance: we
should expect this limit to reproduce one of the two quark-quark potentials, either the
antisymmetric antitriplet or the symmetric sextet. Since the singlet is antisymmetric one
should expect to recover the antisymmetric triplet and this is indeed the case. Secondly
we can compare this result with the singlet quark-antiquark potential Eq. (2.23) and
observe that the singlet mesonic potential is NC−1 times the singlet baryonic potential.
It has been a long-known result that the quark-quark potential in an ordinary baryon
(NC = 3) is half of the quark-antiquark potential: we can now affirm that this “1

2 rule”
is a specific case of a more general “NC − 1 rule”. This rule has a deeper explanation
in group representation theory: if we collapse NC − 1 quarks in the same position the
remaining one will “see” (NC − 1) times the quark-quark potential, corresponding to
the quark-antiquark potential. It can be shown from Young tableaux that the SU(NC)
antisymmetric representation of rank NC − 1 describing a system of NC − 1 quarks with
a totally antisymmetric color state has dimension NC and corresponds to the conjugate
fundamental representation, i.e. the representation describing the antiquark.
The decuplet tree-level factor f0(∆) is, similarly to the singlet, equal for all of the three
distances in r, due to the symmetric nature of the tensor. Using the explicit expression
(2.54) for ∆ and the 8 Gell-Mann matrices one easily obtains that f0(∆) = 1
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We can notice that the color factor (1
3) correspond to the one for the symmetric sextet

quark-quark potential[41].
The octet tree-level factor is more complicated for two reasons: it is a matrix and it

depends on which lines are involved in the gluon exchange. The tree-level potential can
5This result has been verified with the help of Mathematica for each one of the ten elements of ∆.
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where fXY is the color factor for initial octet state X = A,S and final octet state Y =
A,S. If we examine the definitions (2.52) and (2.53) we notice that both representation
distinguish the quark line labeled by the color index k from the other two lines: we then
recall from the Wilson loop definition (2.61) and from Eq. (2.63) that the distance r1

is the one between quarks i and j, r2 the one between i and k and r3 the one between
j and k. As we stated before there is a nonzero color factor connecting OA and OS

at the tree level: more in detail this is true for exchanges involving the k quark line,
corresponding to the distances r2 and r3. An example diagram is shown in Fig. 2.9.
With these convention for the distances the tree-level potential becomes
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where the elements of the matrices are organized as in Eq. (2.81). We immediately notice
that the matrix multiplying 1

|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
quark-quark potentials. This can be explained by the infinite-distance reasoning we
proposed before: if the quark k is put to infinity the two octets disentangle and we are
left with the two quark-quark potentials.
The matrices multiplying 1

|r2,3| have the same diagonal elements but opposite off-diagonal
ones: this means that they share the same eigenvalues but have different eigenvectors.
The eigenvalues are (−2/3, 1/3) with corresponding eigenvectors
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where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1

|r2,3| thus corresponds to
the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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where the elements of the matrices are organized as in Eq. (2.81). We immediately notice
that the matrix multiplying 1

|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
quark-quark potentials. This can be explained by the infinite-distance reasoning we
proposed before: if the quark k is put to infinity the two octets disentangle and we are
left with the two quark-quark potentials.
The matrices multiplying 1

|r2,3| have the same diagonal elements but opposite off-diagonal
ones: this means that they share the same eigenvalues but have different eigenvectors.
The eigenvalues are (−2/3, 1/3) with corresponding eigenvectors
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where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1

|r2,3| thus corresponds to
the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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where fXY is the color factor for initial octet state X = A,S and final octet state Y =
A,S. If we examine the definitions (2.52) and (2.53) we notice that both representation
distinguish the quark line labeled by the color index k from the other two lines: we then
recall from the Wilson loop definition (2.61) and from Eq. (2.63) that the distance r1

is the one between quarks i and j, r2 the one between i and k and r3 the one between
j and k. As we stated before there is a nonzero color factor connecting OA and OS

at the tree level: more in detail this is true for exchanges involving the k quark line,
corresponding to the distances r2 and r3. An example diagram is shown in Fig. 2.9.
With these convention for the distances the tree-level potential becomes
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|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
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where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1
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the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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where the elements of the matrices are organized as in Eq. (2.81). We immediately notice
that the matrix multiplying 1

|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
quark-quark potentials. This can be explained by the infinite-distance reasoning we
proposed before: if the quark k is put to infinity the two octets disentangle and we are
left with the two quark-quark potentials.
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|r2,3| have the same diagonal elements but opposite off-diagonal
ones: this means that they share the same eigenvalues but have different eigenvectors.
The eigenvalues are (−2/3, 1/3) with corresponding eigenvectors

λ−2/3 =
�
∓OA

√
3

, O
S

�
λ1/3 =

�
±
√

3O
A

, O
S

�
, (2.83)

where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1

|r2,3| thus corresponds to
the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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recall from the Wilson loop definition (2.61) and from Eq. (2.63) that the distance r1

is the one between quarks i and j, r2 the one between i and k and r3 the one between
j and k. As we stated before there is a nonzero color factor connecting OA and OS
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where the elements of the matrices are organized as in Eq. (2.81). We immediately notice
that the matrix multiplying 1

|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
quark-quark potentials. This can be explained by the infinite-distance reasoning we
proposed before: if the quark k is put to infinity the two octets disentangle and we are
left with the two quark-quark potentials.
The matrices multiplying 1

|r2,3| have the same diagonal elements but opposite off-diagonal
ones: this means that they share the same eigenvalues but have different eigenvectors.
The eigenvalues are (−2/3, 1/3) with corresponding eigenvectors
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where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1

|r2,3| thus corresponds to
the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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where the elements of the matrices are organized as in Eq. (2.81). We immediately notice
that the matrix multiplying 1

|r1| is diagonal and its entries correspond to the singlet and
decuplet color factors, each of them in turn corresponding to the antitriplet and sextet
quark-quark potentials. This can be explained by the infinite-distance reasoning we
proposed before: if the quark k is put to infinity the two octets disentangle and we are
left with the two quark-quark potentials.
The matrices multiplying 1
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where the upper sign refers to the matrix with positive off-diagonal entries and the
lower one to the other. If we construct the matrix P so that PMP−1 diagonalizes M ,
where M is one of the two non-diagonal matrices, the other being M �, we notice that
P does not diagonalize M � and renders the already-diagonal matrix off-diagonal. The
diagonalization of the matrix related to one of the distances 1

|r2,3| thus corresponds to
the creation of two new octet representations, the first antisymmetric in the indices
connected by this distance and the second symmetric. With our convention this means
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Figure 2.10: Diagrams appearing at order g4 in the three-quark potential. The blob
in diagram f indicates all possible particles contributing to the running coupling (light
quarks, gluons and ghosts).

indices i and k for |r2|, j and k for |r3|.
We can thus affirm that the infinite-distance argument applies for any of the three
distances: if we put for example quark i at infinite distance from the other two the
potential reduces to the |r3| part. The matrix can then be diagonalized yielding the
physically sound values of the antitriplet and sextet quark-quark potentials.

2.3.3 The potential at order g4

In computing the one-loop6 corrections to the above-defined potentials we can again
resort to the factorization of the color part in the amplitudes. At order g4 we have two
classes of diagrams: two-body diagrams and three-body diagrams. Two-body diagrams
still contain a spectator quark: they are simply the quark-antiquark one loop diagrams
with the static antiquark propagator turned into a quark one and with the addition of the
spectator line. Their color factor will of course be different but the amplitude is easily
obtained from the QQ equivalent, since the static source and antisource propagator are
identical in position space as in Eq. (A.1).
Three-body diagrams instead, such as the ones in Fig. 2.10 d) and e) do not contain
a spectator quark. We will however show that the diagrams of type d constitute the

6Diagrams with a three-body interaction do not contain loops at order g4. In this section one-loop
improperly labels all the order g4 diagrams.
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where any possible terms not depending on r have been dropped.
The matching of the Green functions in NRQCD and pNRQCD then yields

V
(0)
C = w0(r) (2.66)

log Z
(0)
C (r) = w1(r). (2.67)

In order to keep a lighter notation in the following we will drop the index (0) and all
potentials are to be understood as static. The potential thus becomes

VC = lim
TW→∞

− 1
iTW

log
�Cu W Cv∗�

�Suv
C � . (2.68)

The definition of the static octet potential is a bit more complicated because, as we stated
above, a tree-level one-gluon exchange is able to mix the two representations, i.e. there is
a nonzero color amplitude with an initial symmetric octet state and a final antisymmetric
one and vice versa. This means that we cannot follow the track we set down for the
singlet and decuplet potential and define VOA and VOS , because these two potentials will
mix at the tree-level and will not exponentiate at the one-loop level3. We have thus to
define a matrix potential VO(r) as a 2 × 2 matrix: let Oa

ijk
=

�OAa
ijk

OSa
ijk

�
be a column vector

containing the two tensors and O
a†
ijk

=
�
OAa∗

ijk
OSa∗

ijk

�
be its transpose conjugate. With

this modification to both sides (NRQCD and pNRQCD) of the matching condition we
thus have

VO = w0(r) = lim
TW→∞

− 1
iTW

log
�Oa W Ob†�

�Sab
O
�

(2.69)

with the string

�0|Sab
O |0� = �0|

3�

ijklmn=1

O
a

ijkφil(TW /2,−TW /2;R)φjm(TW /2,−TW /2;R)

×φkn(TW /2,−TW /2;R)Ob†
lmn

|0�. (2.70)

We can now start computing these potentials at the tree-level and then consider the
one-loop corrections. The calculation can be split in two parts: the computation of the
amplitudes, once again choosing the Coulomb gauge, and the calculation of the color
factors, which will differ for each potential. In particular we will show how these factors
correctly exponentiate at the one-loop level.
The perturbative computation of the amplitudes is just a straightforward generaliza-

tion of the quark-antiquark case: the three horizontal Wilson lines, corresponding to
the static quarks, and the six endpoint vertical lines can be expanded in g as in (2.16).

3The singlet and decuplet representations do not mix with each other at the considered orders in g,
nor with the octets, due to the different symmetries involved. We lack a general proof, this has been
tested for the tree-level and order g4 exchanges.
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indices i and k for |r2|, j and k for |r3|.
We can thus affirm that the infinite-distance argument applies for any of the three
distances: if we put for example quark i at infinite distance from the other two the
potential reduces to the |r3| part. The matrix can then be diagonalized yielding the
physically sound values of the antitriplet and sextet quark-quark potentials.

2.3.3 The potential at order g4

In computing the one-loop6 corrections to the above-defined potentials we can again
resort to the factorization of the color part in the amplitudes. At order g4 we have two
classes of diagrams: two-body diagrams and three-body diagrams. Two-body diagrams
still contain a spectator quark: they are simply the quark-antiquark one loop diagrams
with the static antiquark propagator turned into a quark one and with the addition of the
spectator line. Their color factor will of course be different but the amplitude is easily
obtained from the QQ equivalent, since the static source and antisource propagator are
identical in position space as in Eq. (A.1).
Three-body diagrams instead, such as the ones in Fig. 2.10 d) and e) do not contain
a spectator quark. We will however show that the diagrams of type d constitute the

6Diagrams with a three-body interaction do not contain loops at order g4. In this section one-loop
improperly labels all the order g4 diagrams.
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We can now start computing these potentials at the tree-level and then consider the
one-loop corrections. The calculation can be split in two parts: the computation of the
amplitudes, once again choosing the Coulomb gauge, and the calculation of the color
factors, which will differ for each potential. In particular we will show how these factors
correctly exponentiate at the one-loop level.
The perturbative computation of the amplitudes is just a straightforward generaliza-

tion of the quark-antiquark case: the three horizontal Wilson lines, corresponding to
the static quarks, and the six endpoint vertical lines can be expanded in g as in (2.16).

3The singlet and decuplet representations do not mix with each other at the considered orders in g,
nor with the octets, due to the different symmetries involved. We lack a general proof, this has been
tested for the tree-level and order g4 exchanges.
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Figure 2.10: Diagrams appearing at order g4 in the three-quark potential. The blob
in diagram f indicates all possible particles contributing to the running coupling (light
quarks, gluons and ghosts).

indices i and k for |r2|, j and k for |r3|.
We can thus affirm that the infinite-distance argument applies for any of the three
distances: if we put for example quark i at infinite distance from the other two the
potential reduces to the |r3| part. The matrix can then be diagonalized yielding the
physically sound values of the antitriplet and sextet quark-quark potentials.

2.3.3 The potential at order g4

In computing the one-loop6 corrections to the above-defined potentials we can again
resort to the factorization of the color part in the amplitudes. At order g4 we have two
classes of diagrams: two-body diagrams and three-body diagrams. Two-body diagrams
still contain a spectator quark: they are simply the quark-antiquark one loop diagrams
with the static antiquark propagator turned into a quark one and with the addition of the
spectator line. Their color factor will of course be different but the amplitude is easily
obtained from the QQ equivalent, since the static source and antisource propagator are
identical in position space as in Eq. (A.1).
Three-body diagrams instead, such as the ones in Fig. 2.10 d) and e) do not contain
a spectator quark. We will however show that the diagrams of type d constitute the

6Diagrams with a three-body interaction do not contain loops at order g4. In this section one-loop
improperly labels all the order g4 diagrams.
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where any possible terms not depending on r have been dropped.
The matching of the Green functions in NRQCD and pNRQCD then yields

V
(0)
C = w0(r) (2.66)

log Z
(0)
C (r) = w1(r). (2.67)

In order to keep a lighter notation in the following we will drop the index (0) and all
potentials are to be understood as static. The potential thus becomes

VC = lim
TW→∞

− 1
iTW

log
�Cu W Cv∗�

�Suv
C � . (2.68)

The definition of the static octet potential is a bit more complicated because, as we stated
above, a tree-level one-gluon exchange is able to mix the two representations, i.e. there is
a nonzero color amplitude with an initial symmetric octet state and a final antisymmetric
one and vice versa. This means that we cannot follow the track we set down for the
singlet and decuplet potential and define VOA and VOS , because these two potentials will
mix at the tree-level and will not exponentiate at the one-loop level3. We have thus to
define a matrix potential VO(r) as a 2 × 2 matrix: let Oa

ijk
=

�OAa
ijk

OSa
ijk

�
be a column vector

containing the two tensors and O
a†
ijk

=
�
OAa∗

ijk
OSa∗

ijk

�
be its transpose conjugate. With

this modification to both sides (NRQCD and pNRQCD) of the matching condition we
thus have

VO = w0(r) = lim
TW→∞

− 1
iTW

log
�Oa W Ob†�

�Sab
O
�

(2.69)

with the string

�0|Sab
O |0� = �0|

3�

ijklmn=1

O
a

ijkφil(TW /2,−TW /2;R)φjm(TW /2,−TW /2;R)

×φkn(TW /2,−TW /2;R)Ob†
lmn

|0�. (2.70)

We can now start computing these potentials at the tree-level and then consider the
one-loop corrections. The calculation can be split in two parts: the computation of the
amplitudes, once again choosing the Coulomb gauge, and the calculation of the color
factors, which will differ for each potential. In particular we will show how these factors
correctly exponentiate at the one-loop level.
The perturbative computation of the amplitudes is just a straightforward generaliza-

tion of the quark-antiquark case: the three horizontal Wilson lines, corresponding to
the static quarks, and the six endpoint vertical lines can be expanded in g as in (2.16).

3The singlet and decuplet representations do not mix with each other at the considered orders in g,
nor with the octets, due to the different symmetries involved. We lack a general proof, this has been
tested for the tree-level and order g4 exchanges.
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FIG. 4: Diagrams appearing at order g4 in the three-quark potential.

a quark propagator and with the addition of a spectator line. Their colour factor is of course

different but the amplitude can be easily obtained from the QQ equivalent.

Three-body diagrams such as the ones in Fig. 4 d) and 4 e) do not contain a spectator

quark. We will show that diagrams of type 4 d) only contribute to the exponentiation of

the LO potential, i.e. cancel in Eq. (12) against −M(0) 2(C, r)/2, whereas the ones of type

4 e), which include also diagrams with two gluons attached to the same quark line, vanish

because they involve triple-gluon vertices of only longitudinal gluons.

A. Calculation of V (1)
C

We start by examining the two-body diagrams in Coulomb gauge. These are shown in

Fig. 4 a), b) (the ladder and crossed diagrams), c) (the Abelian vertex correction) and f)

(the gluon self-energy diagrams). In Coulomb gauge, the crossed diagram and the Abelian

13



 QQQ potential at NLO

is essentially the same that allowed us to obtain the one-loop result of the QQ singlet

potential (take into account only the diagrams that do not exponentiate), albeit more

complicated due to the presence of the three-quark diagrams, we conclude that α1
VC

(q2
q)

not only does not depend on the representation, but is the same for quark-quark and

quark-antiquark interactions. We can therefore recall Eq. (2.28) and write α1
VC

(q2
q) as

α1
VC(q

2
q) = αMS(q2

q)

�
1 +

�
31

9
CA −

20

9
TF nf

�
αMS(q2

q)

4π

�
∀C. (2.92)

We should however remark that there is no evidence, nor it is expected, that this equiva-

lence at the one-loop level between the effective coupling in the quark-antiquark potential

and in the quark-quark part of the baryonic one is preserved at higher order, nor that

the representation independence of α1
VC

(q2
q) is preserved.

We can finally define the one-loop potential in position space as the sum of the Fourier

transforms of the terms (2.91). The transform requires a careful work in handling the

logarithms appearing in α1
VC

and has been performed in [30] in order to compute the

two-loop QQ position space potential. Here we quote the one-loop part of that result,

obtaining the following expression for the baryonic potential

V 1
C (r) =

3�

i=1

f0
q (C)

αMS(µ2
)

|rq|

�
1 +

αMS(µ2
)

4π

�
2β0 log(µr�

q) + a1
��

, (2.93)

where a1 =
31
9 CA − 20

9 TF nf , β0 is the first coefficient of the β-function as in Eq. (1.16)

and r�
q = |rq| exp γ, where γ is Euler’s constant. This expression depends explicitly on

the renormalization scale µ2
. A possible choice is µ =

1
|rq | , yielding

V 1
C (r) =

3�

i=1

f0
q (C)

αMS(rq)

|rq|

�
1 +

αMS(rq)

4π
(2β0γ + a1)

�
. (2.94)

We conclude remarking that higher order diagrams introduce a three-body interaction

that is not an exponentiation of two two-body ones and the potential will thus not

be anymore a simple sum of three
1

|rq | terms. An analysis of the order g6
three-body

diagrams will be carried out in Sec. 2.4.

2.3.4 Color factors in one-loop exponentiation

In the previous section the proof of Eqs. (2.87) and (2.90) has been postponed to

this section. We now provide it starting from the singlet case. We recall from Eq.

(2.76) that the tree-level color factor is identical for the 3 (or NC(NC − 1)/2 in the

generalized baryon) possible quark-quark interactions. We thus drop the index q and

start by checking the uncrossed ladder color factor, considering the generalized baryon.

In analogy with Eq. (2.76) we can write the color factor as

f1
(S)uc =

εijkl...√
NC !

T a
ixT b

xmT a
jyT

b
ynδkoδlp . . .

εmnop...√
NC !

.
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FIG. 4: Diagrams appearing at order g4 in the three-quark potential.

a quark propagator and with the addition of a spectator line. Their colour factor is of course

different but the amplitude can be easily obtained from the QQ equivalent.

Three-body diagrams such as the ones in Fig. 4 d) and 4 e) do not contain a spectator

quark. We will show that diagrams of type 4 d) only contribute to the exponentiation of

the LO potential, i.e. cancel in Eq. (12) against −M(0) 2(C, r)/2, whereas the ones of type

4 e), which include also diagrams with two gluons attached to the same quark line, vanish

because they involve triple-gluon vertices of only longitudinal gluons.

A. Calculation of V (1)
C

We start by examining the two-body diagrams in Coulomb gauge. These are shown in

Fig. 4 a), b) (the ladder and crossed diagrams), c) (the Abelian vertex correction) and f)

(the gluon self-energy diagrams). In Coulomb gauge, the crossed diagram and the Abelian
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transforms of the terms (2.91). The transform requires a careful work in handling the
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We conclude remarking that higher order diagrams introduce a three-body interaction

that is not an exponentiation of two two-body ones and the potential will thus not

be anymore a simple sum of three
1

|rq | terms. An analysis of the order g6
three-body

diagrams will be carried out in Sec. 2.4.

2.3.4 Color factors in one-loop exponentiation

In the previous section the proof of Eqs. (2.87) and (2.90) has been postponed to

this section. We now provide it starting from the singlet case. We recall from Eq.

(2.76) that the tree-level color factor is identical for the 3 (or NC(NC − 1)/2 in the

generalized baryon) possible quark-quark interactions. We thus drop the index q and

start by checking the uncrossed ladder color factor, considering the generalized baryon.

In analogy with Eq. (2.76) we can write the color factor as
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In general we have, to any giver loop order n

αVs(q
2
) = αMS(µ2

)

∞�

n=0

ãn(µ2/q2
)

�
αMS(µ2

)

4π

�n

(2.25)

The renormalization group equation (Eqs. (1.9) and (1.12)) implies that

αMS(q2
) =

αMS(µ2
)

1 + β0
αMS(µ2)

4π log
q2

µ2

(2.26)

where β0 is the well-known first coefficient of the QCD β-function (Eq. (1.16)). Inserting

this expression in Equation (2.25) one has

αVs(q
2
) = αMS(q2

)

∞�

n=0

an

�
αMS(q2

)

4π

�n

(2.27)

At the tree level one clearly has a0 = ã0 = 1. The one-loop calculation yields

a1 =
31

9
CA −

20

9
TF nf , ã1 = a1 + β0 log

µ2

q2
. (2.28)

The first term in a1 comes from the finite part of the gluon/ghost vacuum polarization

amplitude, while the second term comes from the finite part of the fermion loop vacuum

polarization. A detailed derivation of Eq. (2.28) will be given in Sec. 2.1.3.

It is important to remark that, as long as nf ≤ 9, αVs(q2
) is greater than αMS(q2

). The

difference does not depend on q2
and makes the potential more attractive.

2.1.3 A detailed Coulomb gauge calculation of the one-loop potential

The quark-antiquark potential is extracted from the Wilson loop (Eq. (2.12)), which is

by definition gauge-invariant, and so has to be gauge invariant too. We are thus allowed

to perform its calculation in whatever gauge suites us. As we shall see, the Coulomb

gauge is a particularly interesting choice that we will adopt throughout this work. From

a theoretical viewpoint its definition is closely related to the classical instantaneous

potential, as we shall see, whereas from a more practical viewpoint it reduces the number

of diagrams to be considered and will be greatly useful for the following computation of

the baryonic (3 quarks) potential.

The Coulomb gauge condition is

∂iA
i
= 0. (2.29)

The quantization of QCD in Coulomb gauge and the derivation of the various propaga-

tors is rather complicated [33]. Here it suffices to quote the expression for the time-time

propagator. In momentum space at order zero it simply is

D00
ab(q

2
) =

iδab

q2
(2.30)
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FIG. 4: Diagrams appearing at order g4 in the three-quark potential.

a quark propagator and with the addition of a spectator line. Their colour factor is of course

different but the amplitude can be easily obtained from the QQ equivalent.

Three-body diagrams such as the ones in Fig. 4 d) and 4 e) do not contain a spectator

quark. We will show that diagrams of type 4 d) only contribute to the exponentiation of

the LO potential, i.e. cancel in Eq. (12) against −M(0) 2(C, r)/2, whereas the ones of type

4 e), which include also diagrams with two gluons attached to the same quark line, vanish

because they involve triple-gluon vertices of only longitudinal gluons.

A. Calculation of V (1)
C

We start by examining the two-body diagrams in Coulomb gauge. These are shown in

Fig. 4 a), b) (the ladder and crossed diagrams), c) (the Abelian vertex correction) and f)

(the gluon self-energy diagrams). In Coulomb gauge, the crossed diagram and the Abelian
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and in the quark-quark part of the baryonic one is preserved at higher order, nor that

the representation independence of α1
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We can finally define the one-loop potential in position space as the sum of the Fourier

transforms of the terms (2.91). The transform requires a careful work in handling the

logarithms appearing in α1
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and has been performed in [30] in order to compute the

two-loop QQ position space potential. Here we quote the one-loop part of that result,
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We conclude remarking that higher order diagrams introduce a three-body interaction

that is not an exponentiation of two two-body ones and the potential will thus not

be anymore a simple sum of three
1

|rq | terms. An analysis of the order g6
three-body

diagrams will be carried out in Sec. 2.4.

2.3.4 Color factors in one-loop exponentiation
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this section. We now provide it starting from the singlet case. We recall from Eq.

(2.76) that the tree-level color factor is identical for the 3 (or NC(NC − 1)/2 in the

generalized baryon) possible quark-quark interactions. We thus drop the index q and
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FIG. 4: Diagrams appearing at order g4 in the three-quark potential.

a quark propagator and with the addition of a spectator line. Their colour factor is of course

different but the amplitude can be easily obtained from the QQ equivalent.

Three-body diagrams such as the ones in Fig. 4 d) and 4 e) do not contain a spectator

quark. We will show that diagrams of type 4 d) only contribute to the exponentiation of

the LO potential, i.e. cancel in Eq. (12) against −M(0) 2(C, r)/2, whereas the ones of type

4 e), which include also diagrams with two gluons attached to the same quark line, vanish

because they involve triple-gluon vertices of only longitudinal gluons.

A. Calculation of V (1)
C

We start by examining the two-body diagrams in Coulomb gauge. These are shown in

Fig. 4 a), b) (the ladder and crossed diagrams), c) (the Abelian vertex correction) and f)

(the gluon self-energy diagrams). In Coulomb gauge, the crossed diagram and the Abelian
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is essentially the same that allowed us to obtain the one-loop result of the QQ singlet

potential (take into account only the diagrams that do not exponentiate), albeit more

complicated due to the presence of the three-quark diagrams, we conclude that α1
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We should however remark that there is no evidence, nor it is expected, that this equiva-

lence at the one-loop level between the effective coupling in the quark-antiquark potential

and in the quark-quark part of the baryonic one is preserved at higher order, nor that

the representation independence of α1
VC

(q2
q) is preserved.

We can finally define the one-loop potential in position space as the sum of the Fourier

transforms of the terms (2.91). The transform requires a careful work in handling the

logarithms appearing in α1
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and has been performed in [30] in order to compute the

two-loop QQ position space potential. Here we quote the one-loop part of that result,

obtaining the following expression for the baryonic potential

V 1
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where a1 =
31
9 CA − 20

9 TF nf , β0 is the first coefficient of the β-function as in Eq. (1.16)

and r�
q = |rq| exp γ, where γ is Euler’s constant. This expression depends explicitly on

the renormalization scale µ2
. A possible choice is µ =
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3�

i=1

f0
q (C)

αMS(rq)

|rq|

�
1 +

αMS(rq)

4π
(2β0γ + a1)

�
. (2.94)

We conclude remarking that higher order diagrams introduce a three-body interaction

that is not an exponentiation of two two-body ones and the potential will thus not

be anymore a simple sum of three
1

|rq | terms. An analysis of the order g6
three-body

diagrams will be carried out in Sec. 2.4.

2.3.4 Color factors in one-loop exponentiation

In the previous section the proof of Eqs. (2.87) and (2.90) has been postponed to

this section. We now provide it starting from the singlet case. We recall from Eq.

(2.76) that the tree-level color factor is identical for the 3 (or NC(NC − 1)/2 in the

generalized baryon) possible quark-quark interactions. We thus drop the index q and

start by checking the uncrossed ladder color factor, considering the generalized baryon.

In analogy with Eq. (2.76) we can write the color factor as
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εijkl...√
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T a
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b
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In general we have, to any giver loop order n
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The renormalization group equation (Eqs. (1.9) and (1.12)) implies that
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where β0 is the well-known first coefficient of the QCD β-function (Eq. (1.16)). Inserting

this expression in Equation (2.25) one has
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At the tree level one clearly has a0 = ã0 = 1. The one-loop calculation yields

a1 =
31

9
CA −

20

9
TF nf , ã1 = a1 + β0 log

µ2

q2
. (2.28)

The first term in a1 comes from the finite part of the gluon/ghost vacuum polarization

amplitude, while the second term comes from the finite part of the fermion loop vacuum

polarization. A detailed derivation of Eq. (2.28) will be given in Sec. 2.1.3.

It is important to remark that, as long as nf ≤ 9, αVs(q2
) is greater than αMS(q2

). The

difference does not depend on q2
and makes the potential more attractive.
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the baryonic (3 quarks) potential.

The Coulomb gauge condition is

∂iA
i
= 0. (2.29)
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2
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q2
(2.30)
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a quark propagator and with the addition of a spectator line. Their colour factor is of course

different but the amplitude can be easily obtained from the QQ equivalent.

Three-body diagrams such as the ones in Fig. 4 d) and 4 e) do not contain a spectator

quark. We will show that diagrams of type 4 d) only contribute to the exponentiation of

the LO potential, i.e. cancel in Eq. (12) against −M(0) 2(C, r)/2, whereas the ones of type

4 e), which include also diagrams with two gluons attached to the same quark line, vanish

because they involve triple-gluon vertices of only longitudinal gluons.

A. Calculation of V (1)
C

We start by examining the two-body diagrams in Coulomb gauge. These are shown in

Fig. 4 a), b) (the ladder and crossed diagrams), c) (the Abelian vertex correction) and f)

(the gluon self-energy diagrams). In Coulomb gauge, the crossed diagram and the Abelian
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factorizes in front of the complete expression of the potential up to NLO. This reads
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where the colour coefficients f
(0)
q (C) may be read from Eqs. (16), (18) and (20). We recall

that, in the octet case, VO is a 2×2 matrix.

The main outcome of Eq. (31) is that at NLO the QQQ static potential and the QQ̄ static

potential [44] just differ by the overall colour representation, but that the effective coupling

of the potential, αV (1/|rq|) = αs(1/|rq|)
�
1 +

αs

4π
(2β0γE + a1)

�
, is the same for all QQ̄, QQ

and QQQ colour representations. There is no reason to believe that this result keeps holding

at NNLO. Indeed, it has been shown in [48] that the colour-singlet and colour-octet effective

couplings for the QQ̄ potential differ at NNLO.

In Feynman gauge, besides the diagram in Fig. 4 f), also the diagrams in Fig. 4 a), b)

and c) contribute to the potential. The situation is very similar to the quark-antiquark case

and it is straightforward to check that the final result up to NLO agrees with Eq. (31).

B. Colour factors in the one-loop exponentiation

In this section, we prove Eqs. (27) and (28) for all colour representations. In the singlet

case, for all q and q� we obtain
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9
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Together with Eq. (16), this proves Eqs. (27) and (28). Analogously, in the decuplet case,

for all q and q� we obtain
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which again, together with Eq. (18), proves Eqs. (27) and (28). In the octet case, f
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as defined in Eq. (24), f
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qq� (C)3body, as defined in Eq. (26), and f
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(20), are 2×2 matrices. By explicit computation, one can show that
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Figure 2.10: Diagrams appearing at order g4 in the three-quark potential. The blob
in diagram f indicates all possible particles contributing to the running coupling (light
quarks, gluons and ghosts).

indices i and k for |r2|, j and k for |r3|.
We can thus affirm that the infinite-distance argument applies for any of the three
distances: if we put for example quark i at infinite distance from the other two the
potential reduces to the |r3| part. The matrix can then be diagonalized yielding the
physically sound values of the antitriplet and sextet quark-quark potentials.

2.3.3 The potential at order g4

In computing the one-loop6 corrections to the above-defined potentials we can again
resort to the factorization of the color part in the amplitudes. At order g4 we have two
classes of diagrams: two-body diagrams and three-body diagrams. Two-body diagrams
still contain a spectator quark: they are simply the quark-antiquark one loop diagrams
with the static antiquark propagator turned into a quark one and with the addition of the
spectator line. Their color factor will of course be different but the amplitude is easily
obtained from the QQ equivalent, since the static source and antisource propagator are
identical in position space as in Eq. (A.1).
Three-body diagrams instead, such as the ones in Fig. 2.10 d) and e) do not contain
a spectator quark. We will however show that the diagrams of type d constitute the

6Diagrams with a three-body interaction do not contain loops at order g4. In this section one-loop
improperly labels all the order g4 diagrams.

43
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where the upper sign refers to the antisymmetric case and the lower sign to the symmet-

ric one. This proves that f (1)
q (S̃)lad and f (1)

q (∆̃)lad are the squares of f (0)
q (S̃) and f (0)

q (∆̃)

respectively, i.e. Eq. (27).

For the three-body diagram we adopt a similar procedure, with the difference that here

the contracted indices will be N − 3.7 The colour factors are then, for all q and q�,

f (1)
qq� (S̃)3body =

εijkl...√
N !

T a
ixT

b
xmT

a
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εmnop...√
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,

and
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a
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b
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a
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b
koδlp . . . ∆̃

v
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ijkl...∆̃

v
ijkl...

.

Proceeding like before, we obtain

f (1)
qq� (S̃, ∆̃)3body =

�
CF

N ∓ 1

�2

∀q, q�, (46)

which proves Eq. (28) for the antisymmetric (upper sign) and the symmetric (lower sign)

case.

VI. THE THREE-BODY PART OF THE STATIC POTENTIAL AT NNLO

We may ask when a genuine three-body interaction, i.e. a contribution which is not

the sum of three 1/|rq| terms and is not generated by the exponentiation of two-quark

interactions, shows up in the Wilson loop. This happens at order g6. More precisely, we

write8

V (2)
C (r) = V 3body

C (r) + α3
s

3�

q=1

a2bodyq (C)
|rq|

, (47)

where the three-body part of V (2)
C , V 3body

C , is defined as the part of V (2)
C that vanishes when

putting one of the quarks at infinite distance from the other two, i.e. in the limit |ri|,

7 For definiteness, we assume the two gluons to be attached to the same quark line. However, starting from

N = 4 quark lines, it is also possible that a gluon is exchanged between two quarks and a second one is

exchanged between two different quarks. This is again a 1/(|rq||rq� |) term and by similar arguments it can

be shown that its colour factor is also the square of (39), thus obeying (28).
8 We assume that ln(µ|rq|) terms have been resummed such that the potential up to NLO reads

VC(r) =
3�

q=1

f (0)
q (C)αs(1/|rq|)

|rq|

�
1 +

αs(1/|rq|)
4π

(2β0γE + a1)

�
. Under this condition, terms like ln(µ|rq|)

or ln2(µ|rq|) are absent at NNLO.
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FIG. 5: Three-body diagrams at NNLO that contribute, in Coulomb gauge, to the exponentiation

of the LO and NLO potential.

|rj| → ∞ (i �= j) with fixed |rk| (k �= i and k �= j). Since V (2)
C is gauge invariant, then, by

definition, also the numerical coefficients a2bodyq (C) and V 3body
C are. V 3body

C may only stem

from diagrams with gluons attached to all three quark lines.

At order g6, we have many diagrams that involve gluons attached to all three quark lines.

These can be divided into some basic categories. The adoption of the Coulomb gauge proves

again useful, making only a small subset of these diagrams different from zero. We thus

have the following diagrams, evaluated, for simplicity, between totally antisymmetric and

symmetric colour states only.

1. The diagrams displayed in Fig. 5 contribute to the exponentiation of the tree-level and

one-loop potentials. At this order of perturbation theory, the matching condition is

given by Eq. (13). It is easily shown that the amplitudes of the diagrams a), b) and
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indices i and k for |r2|, j and k for |r3|.
We can thus affirm that the infinite-distance argument applies for any of the three
distances: if we put for example quark i at infinite distance from the other two the
potential reduces to the |r3| part. The matrix can then be diagonalized yielding the
physically sound values of the antitriplet and sextet quark-quark potentials.

2.3.3 The potential at order g4

In computing the one-loop6 corrections to the above-defined potentials we can again
resort to the factorization of the color part in the amplitudes. At order g4 we have two
classes of diagrams: two-body diagrams and three-body diagrams. Two-body diagrams
still contain a spectator quark: they are simply the quark-antiquark one loop diagrams
with the static antiquark propagator turned into a quark one and with the addition of the
spectator line. Their color factor will of course be different but the amplitude is easily
obtained from the QQ equivalent, since the static source and antisource propagator are
identical in position space as in Eq. (A.1).
Three-body diagrams instead, such as the ones in Fig. 2.10 d) and e) do not contain
a spectator quark. We will however show that the diagrams of type d constitute the

6Diagrams with a three-body interaction do not contain loops at order g4. In this section one-loop
improperly labels all the order g4 diagrams.

43

arises? α3
sat  order (NNLO)

where the upper sign refers to the antisymmetric case and the lower sign to the symmet-

ric one. This proves that f (1)
q (S̃)lad and f (1)

q (∆̃)lad are the squares of f (0)
q (S̃) and f (0)

q (∆̃)

respectively, i.e. Eq. (27).

For the three-body diagram we adopt a similar procedure, with the difference that here

the contracted indices will be N − 3.7 The colour factors are then, for all q and q�,

f (1)
qq� (S̃)3body =

εijkl...√
N !

T a
ixT

b
xmT

a
jnT

b
koδlp . . .

εmnop...√
N !

,

and

f (1)
qq� (∆̃)3body =

∆̃u
ijkl...T

a
ixT

b
xmT

a
jnT

b
koδlp . . . ∆̃

v
mnop...

∆̃u
ijkl...∆̃

v
ijkl...

.

Proceeding like before, we obtain
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which proves Eq. (28) for the antisymmetric (upper sign) and the symmetric (lower sign)

case.
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of the LO and NLO potential.

|rj| → ∞ (i �= j) with fixed |rk| (k �= i and k �= j). Since V (2)
C is gauge invariant, then, by

definition, also the numerical coefficients a2bodyq (C) and V 3body
C are. V 3body

C may only stem

from diagrams with gluons attached to all three quark lines.

At order g6, we have many diagrams that involve gluons attached to all three quark lines.

These can be divided into some basic categories. The adoption of the Coulomb gauge proves

again useful, making only a small subset of these diagrams different from zero. We thus

have the following diagrams, evaluated, for simplicity, between totally antisymmetric and

symmetric colour states only.

1. The diagrams displayed in Fig. 5 contribute to the exponentiation of the tree-level and

one-loop potentials. At this order of perturbation theory, the matching condition is

given by Eq. (13). It is easily shown that the amplitudes of the diagrams a), b) and
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Figure 2.10: Diagrams appearing at order g4 in the three-quark potential. The blob
in diagram f indicates all possible particles contributing to the running coupling (light
quarks, gluons and ghosts).
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At order g6, we have many diagrams that involve gluons attached to all three quark lines.

These can be divided into some basic categories. The adoption of the Coulomb gauge proves

again useful, making only a small subset of these diagrams different from zero. We thus

have the following diagrams, evaluated, for simplicity, between totally antisymmetric and

symmetric colour states only.

1. The diagrams displayed in Fig. 5 contribute to the exponentiation of the tree-level and

one-loop potentials. At this order of perturbation theory, the matching condition is

given by Eq. (13). It is easily shown that the amplitudes of the diagrams a), b) and
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FIG. 5: Three-body diagrams that contribute, in Coulomb gauge, to the exponentiation of the

order-g4 potential.

V. THE THREE-BODY INTERACTION IN DIAGRAMS AT ORDER g6

In this section we now set on analyzing and computing the three-body interaction at the

next order in the coupling, g6 or equivalently α3
s. At this order, even considering only the

three-body case, we have a large number of diagrams, that can be divided in some basic

categories. The adoption of the Coulomb gauge proves again useful, making only a small

subset of these categories nonzero. We furthermore restrain the analysis to singlet and octet

color states only. We thus have

1. Exponentiations of lower-order results: the diagrams drawn in Fig. 5 are the exponen-

tiation of the tree-level and one-loop potential. At this order in perturbation theory

the exponential in Eq. (1) has to be expanded up to the term (−iVC(r)TW )3/3!. Then

diagrams a, b and c are easily shown to constitute the three-body part of this cubic

term, whereas diagram d can be traced back to a square term, i.e. (−iVC(r)TW )2/2!,

exponentiating the one-loop result of Eq. (39).

More in detail, using position space techniques similar to those of Sec. IV B, it is easily
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FIG. 6: Three-body diagrams that have zero amplitude in Coulomb gauge, but that in other gauges

contribute to the exponentiation of the potential.

object; however Lorenzt invariance dictates that its Lorentz tensor structure has to be

composed by combinations of a metric tensor gµν
and the external momenta qµ

i . The

possible terms are thus either the product of a metric tensor and a single momentum

qµ
i or the product of the three external momenta qµ

i . These are then connected to the

three static sources and therefore, in Coulomb and Feynman gauges, only the time (0)

component of the momenta appears in the tensor structure, whereas in other gauges

there is also a q0qi
term. However, when matching the potential from NRQCD to

pNRQCD, we are integrating out the soft (momentum transfer) scale, thus making the

potential energy-independent. We are therefore allowed to take the q0
i → 0 limit (or

equivalently the infinite-time limit), thereby making the entire tensor structure zero.
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FIG. 7: Three-body diagrams that do not exponentiate any lower-order ones but that have zero

amplitude in Coulomb gauge.

Diagram c involves the three-gluon vertex, whose tensor structure vanishes when con-

nected to the static sources. For the same reason the four-gluon vertex structure

vanishes in diagram d, making its amplitude zero as well.

4. We are then left with diagrams such as the ones in Fig. 8, which are thus in Coulomb

gauge the only contribution to the three-body interaction. It should however be re-

marked that we expect the sum of their amplitudes to be gauge-invariant. These

diagrams constitute the three-body interaction at this order and the potential is gauge

invariant order-by-order. The three-body terms do not mix with the two-body terms,

so the three-body part is gauge-invariant order-by-order too, and therefore the sum of

all the diagrams such as the one of Fig. 8 in Coulomb gauge constitutes the gauge-

invariant three-body part of the potential at order g6.

We now concentrate on the evaluation of these diagrams. There are six different diagrams

of each kind (a and b): for each source line there are two diagrams where this line couples to

two gluons (like the bottom line in Fig 8). These two diagrams are symmetric with respect

to a permutation of the other two lines and so share the same amplitude. We call Ha
q1

(q)
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FIG. 8: The only three-body diagrams that are not exponentiations and that have a non-vanishing

amplitude in Coulomb gauge. Dashed lines are longitudinal gluons, curly lines are transverse

ones. We adopt the following conventions: momenta in vertex 1 are all ingoing, while in index

2 the momenta of the transverse gluon is outgoing, the others are ingoing. We call q1, q2, q3 the

differences between final and initial four-momenta of the three static quarks.

and Hb
q1

(q) the momentum-space amplitude of the diagram in Fig. 8 a and b respectively,

due to their H-shaped appearance, where q = (q1,q2,q3) and the q1 pedix labels the source

that couples to two gluons.

As we shall show later on there is a simplification when one considers the sumHqi(q), defined

as

Hqi(q) = H
a
qi

(q) +H
b
qi

(q) ∀i. (49)

The full amplitude, i.e. the sum of all twelve diagrams, is thus

Htot(q) = 2

3�

i=1

Hqi(q). (50)

Hq2 and Hq3 can be easily obtained from Hq1 by a permutation of the momenta. We thus

concentrate on computing Hq1 .

Here we analyze only the color structure for the singlet representation (24), for a SU(NC)

baryon, and for the decuplet SU(3) representation. We start with the singlet: due to its

25
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amplitudes of the diagrams in Fig. 8 a) and b) respectively and HC = Ha
C
+Hb

C
.

We consider now the colour structure of the diagrams in Fig. 8. The colour factors fH(S)

and fH(∆) are equal for all twelve diagrams:

fH(S) = −1

2
and fH(∆) = −1

4
. (51)

We note that the singlet and decuplet colour factors share the same sign, hence also the

contributions to the potential from these diagrams will share the same sign, at variance with

24
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the tree-level and one-loop results.10

We compute now HC. We call q2 and q3 the momenta that flow out of the first and

second quark line. Setting to zero the external energies, we obtain

H
a
C
(q2,q3) = −fH(C) g6

q2
2q

2
3

�
d4k

(2π)4
4(q2 · k̂ q3 · k̂− q2 · q3)

(k0 + i�)(k− q2)2(k+ q3)2(k2 + i�)
, (52)

and

H
b
C
(q2,q3) = −fH(C) g6

q2
2q

2
3

�
d4k

(2π)4
4(q2 · k̂ q3 · k̂− q2 · q3)

(−k0 + i�)(k− q2)2(k+ q3)2(k2 + i�)
. (53)

Summing Ha
C
and Hb

C
yields

HC(q2,q3) = − ifH(C)g6

q2
2q

2
3

�
d3k

(2π)3
4(q2 · k̂ q3 · k̂− q2 · q3)

k2(k− q2)2(k+ q3)2

=
ifH(C)g6

8q2
2q

2
3

�
|q2 + q3|

|q2||q3|
+

q2 · q3 + |q2||q3|

|q2||q3||q2 + q3|
− 1

|q2|
− 1

|q3|

�
. (54)

The contribution of this diagram to the potential in position space is

VHC(r2, r3) = i

�
d3q2

(2π)3
eiq2·r2

�
d3q3

(2π)3
eiq3·r3HC(q2,q3); (55)

the total contribution of all twelve diagrams of the type shown in Fig. 8 is

V tot
HC

(r) = 2 [VHC(r2, r3) + VHC(r1,−r3) + VHC(−r2,−r1)] . (56)

As shown in App. B, V tot
HC

(r) may be expressed as a double integral suitable for numerical

evaluation. We have considered the following geometries.

10 For the antisymmetric and symmetric representations of a SU(N) baryon made of N quarks, the colour

factors are given by

fH(S̃) =
εijkl...√

N !
T d
imT a

jnT
b
krT

e
rof

bdcfaecδlp . . .
εmnop...√

N !
,

fH(∆̃) =
∆̃u

ijkl...T
d
imT a

jnT
b
krT

e
rof

bdcfaecδlp . . . ∆̃v
mnop...

∆̃u
ijkl...∆̃

v
mnop...

.

Using (without summing over u),

εijkl1...lN−3√
N !

εmnol1...lN−3√
N !

=
δim (δjnδko − δjoδnk)− δin (δjmδko − δjoδkm)− δio (δjnδkm − δjmδkn)

N(N − 2)(N − 1)
,

∆̃u
ijkl1...lN−3

∆̃u
mnol1...lN−3

=
δim (δjnδko + δjoδnk) + δin (δjmδko + δjoδkm) + δio (δjnδkm + δjmδkn)

N(N + 2)(N + 1)
,

we obtain

fH(S̃, ∆̃) = −N ± 1

8
.
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 complicate amplitude

the 3body potential in configuration space can be 
calculated   numerically



 Let us consider some simple geometries 

(A) Isosceles geometry in a plane
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at the vertices of an isosceles triangle. The potential V tot
HC

depends on r and θ; it has the

form
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cH(θ)

r
. (57)

In Fig. 9(a), we plot cH(θ) as a function of θ. The coefficient is always positive, giving rise

to an attractive contribution to the potential, both in the singlet and decuplet channels (we

recall that the colour factors (51) are negative). The dependence on the angle θ, i.e. on the

geometry of the configuration at fixed r, is weak: cH(θ) ranges from a maximum of about

1.46 at θ ≈ 0.65 to a minimum of about 0.49 at θ = π. On the contrary, the dependence

on the geometry of the two-body contributions to the potential, such as Eq. (14), is much

stronger. In particular, the two-body contribution diverges in |r1| = 0, i.e. for θ = 0.

The weaker dependence on the geometry of the three-body contribution with respect to

the two-body contribution could signal the onset of a smooth transition towards the long-

distance Y-shaped three-body potential seen in the lattice data. This long-distance potential

turns out to depend only on one length, L, which is the sum of the distances between the
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
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θ
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3 sin

θ
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. (58)

Note that the Fermat point of any triangle with an angle greater or equal than 2π/3 is

located at the vertex of that angle. In terms of L, Eq. (57) becomes

V tot
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g(θ)cH(θ)

L
. (59)

In Fig. 9(b), for completeness, we plot g(θ)cH(θ) as a function of θ. The plot is qualitatively

very similar to the plot of cH(θ): the maximum gets shifted to θ ≈ 1.047, numerically

equivalent to the equilateral geometry θ = π/3, which thus appears to be the energetically

favored one for V tot
HC

(L, θ) at fixed L.

(A.1) θ = 0: two quarks in the same position

A special case of isosceles geometry is θ = 0, where two quarks are located in the same
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FIG. 9: In Fig. (a), we plot the coefficient cH(θ) as defined in Eq. (57) and obtained from the

numerical integration of Eq. (B3). In Fig. (b), we plot g(θ)cH(θ).

position. From

�
d(q̂2 · q̂3) HC(q2,q3) = 0, it follows that VHC(0, r3) = VHC(r2,0) = 0,

hence V tot
HC

(r, 0) = 2VHC(r, r). The three-body potential is finite and given by:

V tot
HC

(r, 0) = fH(C)α
3
s

cH(0)

r
, with cH(0) = 6− π2

2
. (60)

(A.2) θ = π/3: planar equilateral geometry

In the equilateral case, we have cH(π/3) ≈ 1.377. We may compare the relative magnitude

of the three-body contribution to the tree-level potential. In the singlet case (cf. Eq. (17)),

the ratio yields
V tot
H s (r)

V (0)
s (r)

=
cH(π/3)

4
α2
s (1/r) ≈

α2
s (1/r)

2.90
, (61)

where we have made explicit the scale dependence of the coupling constant. We note that,

using αs at one loop, V tot
H s (r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still holds [13].

(B) Generic geometry

In the most general geometry, the three-body potential (56) depends on two coordinates.

We may arbitrarily chose one of these coordinates to be L, leaving the other unspecified. If

we call a, b, c the lengths of the three sides of the triangle made of the three quarks, then L
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FIG. 9: In Fig. (a), we plot the coefficient cH(θ) as defined in Eq. (57) and obtained from the

numerical integration of Eq. (B3). In Fig. (b), we plot g(θ)cH(θ).
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(A.2) θ = π/3: planar equilateral geometry
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where we have made explicit the scale dependence of the coupling constant. We note that,

using αs at one loop, V tot
H s (r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still holds [13].

(B) Generic geometry

In the most general geometry, the three-body potential (56) depends on two coordinates.

We may arbitrarily chose one of these coordinates to be L, leaving the other unspecified. If

we call a, b, c the lengths of the three sides of the triangle made of the three quarks, then L

27

attractive contribution to the potential



 Let us consider some simple geometries 

(A) Isosceles geometry in a plane

In this geometry, the three quarks are placed in different positions of the same plane, with

two distances chosen to be equal: |r2| = |r3| = r and r̂2 · r̂3 = cos θ. The quarks are located

at the vertices of an isosceles triangle. The potential V tot
HC

depends on r and θ; it has the

form

V tot
HC

(r, θ) = fH(C)α3
s

cH(θ)

r
. (57)
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the two-body contribution could signal the onset of a smooth transition towards the long-
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turns out to depend only on one length, L, which is the sum of the distances between the
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Note that the Fermat point of any triangle with an angle greater or equal than 2π/3 is
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In Fig. 9(b), for completeness, we plot g(θ)cH(θ) as a function of θ. The plot is qualitatively

very similar to the plot of cH(θ): the maximum gets shifted to θ ≈ 1.047, numerically

equivalent to the equilateral geometry θ = π/3, which thus appears to be the energetically

favored one for V tot
HC

(L, θ) at fixed L.

(A.1) θ = 0: two quarks in the same position

A special case of isosceles geometry is θ = 0, where two quarks are located in the same
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FIG. 9: In Fig. (a), we plot the coefficient cH(θ) as defined in Eq. (57) and obtained from the

numerical integration of Eq. (B3). In Fig. (b), we plot g(θ)cH(θ).

position. From
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(A.2) θ = π/3: planar equilateral geometry

In the equilateral case, we have cH(π/3) ≈ 1.377. We may compare the relative magnitude

of the three-body contribution to the tree-level potential. In the singlet case (cf. Eq. (17)),

the ratio yields
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=
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where we have made explicit the scale dependence of the coupling constant. We note that,

using αs at one loop, V tot
H s (r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still holds [13].

(B) Generic geometry

In the most general geometry, the three-body potential (56) depends on two coordinates.

We may arbitrarily chose one of these coordinates to be L, leaving the other unspecified. If

we call a, b, c the lengths of the three sides of the triangle made of the three quarks, then L
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FIG. 9: In Fig. (a), we plot the coefficient cH(θ) as defined in Eq. (57) and obtained from the

numerical integration of Eq. (B3). In Fig. (b), we plot g(θ)cH(θ).

position. From

�
d(q̂2 · q̂3) HC(q2,q3) = 0, it follows that VHC(0, r3) = VHC(r2,0) = 0,

hence V tot
HC

(r, 0) = 2VHC(r, r). The three-body potential is finite and given by:

V tot
HC

(r, 0) = fH(C)α
3
s

cH(0)

r
, with cH(0) = 6− π2

2
. (60)

(A.2) θ = π/3: planar equilateral geometry

In the equilateral case, we have cH(π/3) ≈ 1.377. We may compare the relative magnitude

of the three-body contribution to the tree-level potential. In the singlet case (cf. Eq. (17)),

the ratio yields
V tot
H s (r)

V (0)
s (r)

=
cH(π/3)

4
α2
s (1/r) ≈

α2
s (1/r)

2.90
, (61)

where we have made explicit the scale dependence of the coupling constant. We note that,

using αs at one loop, V tot
H s (r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory

still holds [13].

(B) Generic geometry

In the most general geometry, the three-body potential (56) depends on two coordinates.

We may arbitrarily chose one of these coordinates to be L, leaving the other unspecified. If

we call a, b, c the lengths of the three sides of the triangle made of the three quarks, then L
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numerical integration of Eq. (B3). In Fig. (b), we plot g(θ)cH(θ).
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where we have made explicit the scale dependence of the coupling constant. We note that,

using αs at one loop, V tot
H s (r) may become as large as one sixth of the tree-level Coulomb

potential in the region around 0.3 fm, where, at least in the QQ case, perturbation theory
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s ), plotted as function of L

for the geometry described in (B.1).

is given by [37]

L =

�
a2 + b2 + c2

2
+

�
3(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

2

� 1
2

for θmax ≤
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3
,

L = a+ b+ c−max(a, b, c) for θmax >
2π

3
, (62)

where θmax is the largest angle of the triangle.

(B.1) Planar lattice geometry with two fixed quarks

In Fig 10, we plot the three-body potential obtained by placing the three quarks in a plane

(x, y), fixing the position of the first quark in (0, 0), the second one in (1, 0) and moving the

third one in the lattice (0.5+0.125nx, 0.125ny) with nx ∈ {0, 1, ..., 20} and ny ∈ {0, 1, ..., 24}.

The plot clearly shows the dependence on the geometry at fixed L, however, the dependence

is weaker than in the two-body case.

(B.2) Three-dimensional lattice geometry with the three quarks moving along the axes

In the lattice calculation of Ref. [28], the three quarks were located along the axes of a

three-dimensional lattice, namely at (nx, 0, 0), (0, ny, 0) and (0, 0, nz), with nx ∈ {0, 1, ..., 6}

and ny, nz ∈ {1, ..., 6}. For the sake of comparison, we consider the same geometry and plot

the corresponding three-body potential in Fig. 11. The plot shows a weak dependence on

the geometry: much weaker than in the two-body case, but also somewhat weaker than in

the geometry considered in (B.1).

As a final remark, we would like to note that V tot
HC

, the contribution of the diagrams
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up to a singular term independent on r that we may drop, for instance, by dimensionally
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Eq. (B3), it can be seen that this contribution vanishes when one of the quarks is put at
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up to a singular term independent on r that we may drop, for instance, by dimensionally

regularizing the potential in momentum space. In this configuration, V (2)
s (r) is equal to

the static quark-antiquark potential, because, when three quarks are in a colour-singlet
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antitriplet in colour space, i.e. as an antiquark. Owing to the two-loop result of the quark-

antiquark potential, we may therefore write [9]
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From Eqs. (64) and (65), it follows that
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The complete NNLO expression of the three-quark colour-singlet static potential, V (2)
s (r), is

then given by Eq. (63), where V 3body
s (r) = V tot

H s (r) can be read from Eqs. (56) and (B3), and

a2body(S) from Eq. (67). The explicit expression of the colour-singlet static potential up to

NNLO is listed in Eq. (68).

VIII. CONCLUSIONS

We have studied the static potential of a three-quark system in perturbation theory up to

NNLO. Up to NLO, we have analyzed all the colour channels (singlet, octets and decuplet)

of the SU(3) case and the results have been generalized to SU(N) with N quarks for the

totally antisymmetric and totally symmetric channels. At LO, the potential is a sum of three

Coulombic one-gluon exchanges between two of the three quarks. We have pointed out that,

already at this order, octets mix. At NLO, after proving the potential exponentiation, the

potential turns out to be simply a sum of two-body contributions, whose effective coupling

αV is independent of the considered colour state and is the same as for the QQ, QQ and

QQQ potentials. It is expected that αV becomes dependent on the colour state at NNLO,

as it happens in the QQ case.

At NNLO, the first genuine three-body contribution appears. Three-body contributions

are specific features of the QQQ potential and for this reason of particular interest. We

have calculated this contribution, providing numerical results for several geometrical confi-

gurations. The general outcome is that the dependence on the geometry of the three-body
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force is weaker than for the two-body force. Combining the three-body contribution with the

two-body contribution extracted from the NNLO expression of the quark-antiquark static po-

tential, we have obtained the complete three-quark colour-singlet static potential at NNLO.
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, with R = xr2 − yr3, R = |R| and

M = |r2|
�
x(1− x) + |r3|

�
y(1− y). Note that by pulling one of the quarks at infinite

distance from the others, the three-body potential as well as two of the two-body poten-

tials vanish and Eq. (68) reduces to the quark-quark antitriplet static potential at NNLO,

relevant for QQq baryons.

In [24], also the three-loop leading logarithmic contribution in the infrared cut off has been

calculated. Since that calculation does not account for the octet mixing, its result applies for

geometries where the mixing cancels, like the isosceles one. It would be interesting to extend

that calculation to generic geometries and combine the result with the complete NNLO result

given above.

Other possible future developments include comparisons with lattice results. They exist

both for the ground state (the colour-singlet state) and for the possibly first gluonic excitation

of the QQQ system [27, 28]. An accurate comparison in the short range will show the running

of the three-body potential and determine at which distances a perturbative description of

the three-body potential breaks down. It may also serve to establish the nature of the

gluonic excitation seen in the lattice data, determine if it is indeed the first excitation and

clarify if, in the short range, the three static quarks assume a singlet, an octet or a decuplet
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Full QQ antitriplet potential at N^2LO
force is weaker than for the two-body force. Combining the three-body contribution with the

two-body contribution extracted from the NNLO expression of the quark-antiquark static po-

tential, we have obtained the complete three-quark colour-singlet static potential at NNLO.
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y(1 − y). Note that by pulling one of the quarks at infinite

distance from the others, the three-body potential as well as two of the two-body poten-

tials vanish and Eq. (??) reduces to the quark-quark antitriplet static potential at NNLO,

relevant for QQq baryons.

In [? ], also the three-loop leading logarithmic contribution in the infrared cut off has been

calculated. Since that calculation does not account for the octet mixing, its result applies for

geometries where the mixing cancels, like the isosceles one. It would be interesting to extend

that calculation to generic geometries and combine the result with the complete NNLO result

given above.

Other possible future developments include comparisons with lattice results. They exist

both for the ground state (the colour-singlet state) and for the possibly first gluonic excitation

of the QQQ system [? ? ]. An accurate comparison in the short range will show the running

of the three-body potential and determine at which distances a perturbative description

of the three-body potential breaks down. It may also serve to establish the nature of the

gluonic excitation seen in the lattice data, determine if it is indeed the first excitation and

clarify if, in the short range, the three static quarks assume a singlet, an octet or a decuplet

colour configuration; it may also serve to extract the masses of the gluelumps made of three

static quarks. For all this it is crucial that octet mixing is properly taken into account
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