

Neutrino flux calculations for FODO and FFAG nuSTORM rings and NuMAX FODO ring

J. Pasternak, IC London/STFC-RAL-ISIS
J-B. Lagrange, IC London/FNAL

Outline

- Introduction
- Effect of scallop angle on the neutrino flux
 - FODO ring versus FFAG doublet
 - FODO ring versus FFAG doublet
- Flux in the near detector of nuMAX
- Conclusions

Introduction

- No absolute normalization
- No polarisation included
- Comparison between nuSTORM FODO assumes equal number of stored muons, no DA limitations, etc.
- We are interested in understanding the effect of scallop angle on neutrino spectrum and performance
- Flux at near detector of NuMax is calculated just to see the difference in spectrum
- Effects of dispersion and finite emittances are included.
- Beam is generated and decayed in discrete locations along the decay straight and extrapolated to the detectors.

Scallop angle is present in FFAG production straight

Model of scallop angle in FFAGs

For doublet FFAG

For triplet

IDS-NF vs NuMAX

	IDS-NF	NuMAX
Muon energy [GeV]	10	5
Number of bunch pairs	3	1
Bunch train [µs]	250	~170
Normalised acceptance [pi mm rad]	30	20
Ring inclination	10°	5.8°

Imperial College London

Preliminary NuMax ring with FODO production straight

NuMAX

 Near detector distance: 50m, 5m diameter, simulation for 1000000 stored muons

2014 MAP Workshop, SLAC

NuMAX

 Near detector distance: 50m, 5m diameter, simulation for 1000000 stored muons

2014 MAP Workshop, SLAC

Conclusions

- Effect of scallop angle has been evaluated
 - ☐ Its seems to be acceptable in the near detector for both doublet and triplet
 - ☐ Spectrum in the far detector is affected in case of doublet.
- The triplet seems to be the way forward, however more statistics is needed
- Other effects: injection efficiency, capture efficiency and dynamic losses need to be included in performance evaluation.
- Similar simulation was performed for NuMAX near detector: ~1.75 times higher flux of neutrinos per stored muon are produced in NuMAX compared to nuSTORM.
 - ☐ Absolute normalization will be performed.