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Chapter 1

The Basic Model

The atomic nucleus was discovered by Rutherford in 1911, who also classified nuclear physics
as the unclear physics. This characterization continues to apply to several areas of nuclear
physics even today. The fundamental degrees of freedom in nuclei are believed to be quarks
and gluons; however, due to color confinement, they are never visible. At low energies,
quantum chromodynamics (QCD), which governs the behavior of interacting quarks and
gluons, does not have simple solutions. The observed degrees of freedom of nuclear physics
are hadrons, protons and neutrons in particular, and a large effort is focused on numerical
simulations of hadrons using lattice QCD.

In the past century many interesting models were developed to explain the systematic
trends in the low-energy properties of stable and near stable atomic nuclei. They include, for
example, the liquid-drop model, the compound-nucleus model, the shell model, the optical
model, the collective model, and the interacting boson model. These models have provided
deep insights into nuclear structure and reactions, and have been quite successful in corre-
lating many of the nuclear properties. Most of them can be related to the shell model which
describes the general theory of quantum liquid drops. They are discussed in various texts of
nuclear physics.

The nuclear models primarily address stable or near stable nuclei with mass numbers
A > 10. (Letters A and Z are used for the total number of nucleons and protons in the
nucleus, respectively.) They do not aim at describing all systems and phenomena containing
interacting nucleons at low energies. Two extreme examples are the Bethe and Critchfield
calculation of the rate for the p+ p→ d+ e+ + νe weak capture reaction, which powers the
sun, and the structure of neutron stars. We use p, n, and d to denote the proton, neutron
and the deuteron. The letter N denotes nucleons, i.e. either proton or neutron. Bethe
and Critchfield used p-p scattering data and models of the deuteron wave function in their
prediction of the p + p weak capture rate, and many calculations of neutron star structure
also rely on models of nuclear forces.

All the nuclear models tacitly assume that nuclei are made up of interacting nucleons.

1



2 CHAPTER 1. THE BASIC MODEL

Within this approximation a general theory can be developed for all low-energy phenomena
displayed by interacting nucleons, ranging from the deuteron to neutron stars. The present
text is aimed at the simplest version of this theory describing low-energy nuclear systems
as those composed of nucleons interacting via many-body potentials and many-body elec-
troweak currents. We call it the “basic model.” It is likely that the shell model and other
models of nuclei can be considered as suitable approximations of this theory for various
energy and mass regions of nuclear systems.

The basic model assumes that a Hamiltonian,

H =
∑

i

(
mi +

p2
i

2mi

)
+
∑

i<j

vij +
∑

i<j<k

Vijk + . . . , (1.1)

provides a good approximation to the energy of interacting nucleons. The subscripts i, j, k, ...
label the nucleons in the system, and we use natural units (h̄ = 1 and c = 1). Lengths are
in fm, momenta are in fm−1, masses and energies are in MeV, and h̄ c ≈ 197.327 MeV fm.
The mass mi is that of a proton or neutron according to the nature of nucleon i.

If electromagnetic interactions and mass differences between charged and neutral nucle-
ons, pions, and other hadrons are neglected, then the proton and neutron can be considered
as members of a doublet in a hypothetical “isospin space” with isospin t = 1/2, and isospin
projections tz = +1/2 and −1/2, respectively. Similarly, the positively charged, neutral,
and negatively charged pions can be considered as members of a triplet with isospin t = 1,
having isospin projections tz = +1, 0,−1; and so on. In this approximation the mass mi in
the basic Hamiltonian is replaced by the average value, mN = (mp +mn)/2 of the proton
and neutron masses, and the small isospin symmetry breaking terms in the potentials vij ,
Vijk, . . . are ignored. The Hamiltonian then becomes a relatively simpler scalar in isospin
space.

The first term of the Hamiltonian is the nonrelativistic part of the relativistic kinetic
energy (m2

i +p2
i )

1/2 of a free nucleon. Naively including terms of higher order in the nucleon
momentum pi, such as just the next term, −p4

i /(8m
3
i ), can lead to a Hamiltonian that is

unbound from below which is not acceptable. However, the exact expression for the kinetic
energy, its nonrelativistic limit and some higher-order approximations can be used safely.

In addition to isospin t=1/2, nucleons have spin s=1/2. It is convenient to introduce the
Pauli spin and isospin matrices σ and τ , which are related to the spin and isospin operators
s and t via s = σ/2 and t = τ/2. The state of a nucleon can then be specified by giving
its position r, spin projection σz = ±1, and isospin projection τz = ±1. These quantum
numbers are collectively denoted by

x ≡ r, σz , τz . (1.2)

The state of A nucleons can be specified by a generalized vector

X = x1, x2, . . . ,xA , (1.3)
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in a multidimensional position, spin, and isospin space. The nuclear wave function, Ψ(X, t),
is a function of X and time t. The basic model assumes that at low energies, below the pion
production threshold, this wave function obeys the many-body Schrödinger equation:

i
∂

∂t
Ψ(X, t) = HΨ(X, t) . (1.4)

The potentials vij , Vijk, . . . , are operators on the spins and isospins of the nucleons in
the pairs ij, triplets ijk, . . . , and depend on interparticle distances, rij, and so on. They
can also contain momentum dependence pi, pj , and so on. The . . . in the Hamiltonian,
Eq. (1.1), denotes four- and higher-body potentials. The series of potentials is assumed to
be convergent, and potentials beyond three body are often neglected in present versions of
this model.

In order to study and predict rates of electroweak decays and reactions, the model must
contain electroweak current operators describing the interaction of nuclei with electroweak
fields. They are expanded as a sum of one- and many-body (two-body, three-body, . . . )
terms. For example, the operators for the electromagnetic charge and current densities of a
nucleus, denoted as ρc(r) and j(r), have the form

ρc(r) =
∑

i

ρc,i(r) +
∑

i<j

ρc,ij(r) +
∑

i<j<k

ρc,ijk(r) + . . . , (1.5)

j(r) =
∑

i

ji(r) +
∑

i<j

jij(r) +
∑

i<j<k

jijk(r) + . . . , (1.6)

where the one-body operators ρc,i and ji describe the current of a free nucleon i, and the two-
and three-body operators ρij , jij , and ρc,ijk, jijk represent the effects of the interactions vij
and Vijk on the charges and currents of nucleon pairs ij and triplets ijk. There are analogous
expansions for the weak vector and axial vector charge and current operators.

The concept of this model is fairly old. For example, the review of nuclear physics by
Bethe and Bacher in 1937 already assumes its existence. The validity of the model is based
on the convergence of the series describing the interactions and currents. However, these
series cannot yet be derived from QCD. The relation between nuclear forces and currents
and the underlying degrees of freedom of QCD is probably the most unclear part of nuclear
physics, although in the last two decades the emergence of chiral effective field theories has
considerably improved our understanding of this connection.

The interactions vij and Vijk, and the electroweak current operators have to be obtained
from experimental data. However, in quantum mechanics these operators are not unique.
Let us assume that we have a set of potentials vij, Vijk, . . . that explain all the relevant data
using the eigenstates of the Hamiltonian of this set. We can make a unitary transformation
U , and define a new set of potentials v′ij , V

′
ijk, . . . and H ′ such that:

H ′ = UHU † =
∑

i

p2
i

2mi
+
∑

i

1

2mi
[U , p2

i ]U
† +

∑

i<j

U vij U
† +

∑

i<j<k

U Vijk U
† + . . .
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≡
∑

i

p2
i

2mi
+
∑

i<j

v′ij +
∑

i<j<k

V ′
ijk + . . . . (1.7)

The current and other operators O′ of the new set are given by O′ ≡ U OU †, and Ψ′
n ≡ U Ψn

are the eigenstates of H ′ if Ψn are those of H .
The potentials v′ij , V

′
ijk, ... , operators O

′, and eigenstates Ψ′
n of the new set are as good

as those of the first set, and predict the same observables. Many different sets of operators
are possible; for brevity we consider only two. There is no experimental method which can
be used to choose one set over the other. This choice has to be made by the theory used
to describe nuclei, as for example, the choice of gauge in quantum electrodynamics. Ideally
one may wish to have a theory manifestly invariant under the unitary transformations of
interest, however such a theory is generally less transparent than that in which a suitable
choice is made.

Using the two-body Hamiltonians

H2 ≡
p2
ij

2mij
+ vij , H ′

2 ≡
p2
ij

2mij
+ v′ij , (1.8)

it is possible to fit all the two-nucleon scattering data with apparently different two-body
potentials. Here mij is the pp, np or nn reduced mass as needed, and pij is the relative
momentum. The corresponding truncated Hamiltonians H2 and H ′

2, containing only the
two-body potentials vij and v′ij , will generally give different predictions for systems with
A ≥ 3, because the Vijk and V ′

ijk are different. In principle, the Hamiltonians H3 and H ′
3,

including also the three-body potentials Vijk and V ′
ijk are equivalent in systems with A ≤ 3.

The basic model assumes that the series of two-, three-, and many-body potentials and other
operators are rapidly convergent for particular choices of the set. However, this assumption
has to be experimentally verified for the chosen set.

In practice, physically correct constraints can be imposed on models of nuclear (and not
only nuclear) forces used to fit the data and limit their freedom via unitary transformations.
Two sets of constraints have been historically used. The first set limits the ranges of com-
ponents in nuclear forces using very general arguments. The second set requires the forces
to have the maximum locality allowed by the data. From this perspective, for example,
while the “unitary freedom” discussed above would allow one, in the case of the hydrogen
atom Hamiltonian, to design a unitary transformation that makes the Coulomb potential
highly nonlocal at large distances, such freedom is not considered seriously, since a strongly
nonlocal Coulomb interaction between slow charges has presumably no physical reality.



Chapter 2

The Yukawa Potential

The dominant terms in nuclear forces are due to exchange of pions. These terms have
a complex dependence on the spins and isospins of the interacting nucleons coming from
the 0− spin-parity and unit isospin of the pions. In this chapter we consider the simpler,
spin-isospin independent, Yukawa potential due to the coupling of the interacting particles
to a massive scalar field. The spins and isospins of the interacting particles are ignored
for pedagogical clarity, and the main focus is on the representation of meson exchange
interactions by inter-nucleon potentials.

The Yukawa potentials are defined so that the total potential energy in any static configu-
ration of the particles equals the energy of the field in its ground state for that configuration,
apart from constants independent of particle positions. The motion of the particles is ne-
glected as, for example, in electrostatic problems. Classical and quantum treatments lead to
the same potential, and we discuss the classical description first.

2.1 The Yukawa potential in classical mechanics

The classical Lagrangian density L0(φ, φ̇,∇φ) of the free scalar field φ(r, t) is given by

L0(φ, φ̇,∇φ) =
1

2

[
φ̇2(r, t)− |∇φ(r, t) |2 −µ2φ2(r, t)

]
, (2.1)

where φ̇(r, t) denotes the partial derivative with respect to time of φ(r, t) and µ is a param-
eter, to be interpreted, after quantization, as the mass of the field excitation quanta. We
assume that the scalar field couples to particles numbered 1, 2, . . . , A at positions r1, r2,
. . . , rA by an additional interaction term in the Lagrangian density

L(φ, φ̇,∇φ) = L0(φ, φ̇,∇φ) + Lint(φ) , (2.2)

5



6 CHAPTER 2. THE YUKAWA POTENTIAL

where

Lint(φ) = −g φ(r, t)
A∑

i=1

δ(r− ri) , (2.3)

and the parameter g is called the coupling constant. The Euler-Lagrange equation,

∂

∂t

∂L
∂φ̇

+∇ · ∂L
∂(∇φ)

− ∂L
∂φ

= 0 , (2.4)

then leads to

φ̈(r, t)−∇2φ(r, t) + µ2φ(r, t) = −g
A∑

i=1

δ(r− ri) , (2.5)

and the classical lowest-energy state of the field is easily calculated from the solution in the
static limit, i.e. φ(r, t) → φ(r):

∇2φ(r)− µ2φ(r) = g
A∑

i=1

δ(r− ri) . (2.6)

The solution of the above equation is a superposition of the fields of all the particles,

φ(r) =
A∑

i=1

φi(r) , (2.7)

where φi(r) is the field of particle i at ri. It satisfies the equation

∇2φi(r)− µ2φi(r) = g δ(r− ri) , (2.8)

whose solution with the boundary condition φi(r → ∞) → 0 is

φi(r) = − g

4π

e−µ|r−ri|

|r− ri|
. (2.9)

We can now calculate the energy Eφ of the static field, given by

Eφ = −
∫
d3rL(φ,∇φ) =

∫
d3r

[
1

2

[
|∇φ(r) |2 +µ2φ

2
(r)
]
+ g φ(r)

A∑

i=1

δ(r− ri)

]
. (2.10)

After integrating by parts the |∇φ(r) |2 term, we obtain:

Eφ =
∫
d3r

[
1

2
φ(r)

[
−∇2φ(r) + µ2φ(r)

]
+ g φ(r)

A∑

i=1

δ(r− ri)

]
, (2.11)
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which can be further reduced to the form below by using the Euler-Lagrange equation,
Eq. (2.6),

Eφ =
1

2

A∑

i=1

g φ(ri) . (2.12)

Substituting the expressions in Eqs. (2.7) and (2.9) in the above Eφ yields

Eφ = − g2

8π

A∑

i,j=1

e−µ|ri−rj |

|ri − rj|

= − g2

8π

A∑

i=1

lim
r→0

1

r
− g2

4π

A∑

i<j=1

e−µ|ri−rj |

|ri − rj|
. (2.13)

The first term of the above field energy is divergent. It represents the sum of the “self-
energies” of the particles due to interaction with their own scalar field. These “self-energies”
are independent of the positions of the particles, and are inseparable from the energies, or
equivalently the masses, of the isolated particles. The second term of Eφ is a sum of pairwise
Yukawa potentials defined as

vY (rij) = − g2

4π

e−µrij

rij
, (2.14)

where we have used rij to denote |ri − rj|. In all low energy phenomena, in which the scalar
field can be assumed to remain in its lowest energy state, we can replace its energy Eφ by
the sum of pairwise Yukawa potentials

Eφ =
A∑

i<j=1

vY (rij) , (2.15)

by absorbing the sum of the divergent terms in the sum of the masses of the sources.

The above derivation of the Yukawa potential is very similar to the classical derivation of
the Coulomb potential energy of charged particles. In rationalized Heavyside-Lorentz units
the Coulomb potential between two unit charges is

vC(rij) =
e2

4π

1

rij
. (2.16)

The electromagnetic field is massless, i.e. the photons have zero rest mass, therefore the
Coulomb potential does not contain the exponential factor e−µrij in the Yukawa potential.
The difference in the signs of the Yukawa and Coulomb potentials is because the former is
mediated by a scalar field, while the latter is mediated by a vector field.
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2.2 The Yukawa potential in quantum mechanics

The quantization of the free scalar field is discussed in many textbooks. Its excitation quanta
appear as particles, called scalar mesons, with spin-parity 0+ and rest mass µ. Mesons with
momentum k have positive energy denoted by ωk,

ωk =
√
µ2 + k2 . (2.17)

The quantum field operator φ̂(r) in the Schrödinger picture is time independent, and can be
represented in the following two equivalent ways:

φ̂(r) =
∑

k

1√
2ωk

(
ake

ik·r + a†ke
−ik·r

)
,

=
∫ d3k

(2π)3
1√
2ωk

(
ake

ik·r + a†ke
−ik·r

)
. (2.18)

The operators ak and a†k respectively annihilate and create mesons with momentum k.
Normalized plane waves eik·r/L3/2, satisfying periodic boundary conditions in a cubic box of
volume L3, are used in the above field operator with an implicit L→ ∞ limit. In this limit
the sum over k can be replaced by the integral as in Eq. (2.18). Since physical observables
do not depend upon the normalization volume, we have set L = 1 for brevity here and in
the rest of these notes.

The mesons do not interact with each other, and the Hamiltonian of the free meson field,
H0, is a simple sum of the energies of the individual mesons. It is defined so that the vacuum,
denoted by |0〉, has zero energy, and is given by

H0 =
∑

k

ωka
†
kak . (2.19)

Even though the concept of potentials has grown out of classical mechanics, they are
equally useful in quantum problems in which the field stays in its ground state, and the
particles are either static or slowly moving. This is because in the case of static particles
quantum theory gives the same field energy as given by classical mechanics, Eq. (2.13),
for the scalar field. In order to prove this important result, we note that the interaction
Hamiltonian describing the coupling of the field to the particles is given by

Hint = −
∫
d3r L̂int(φ̂) = g

∫
d3r φ̂(r)

A∑

i=1

δ(r− ri) . (2.20)

Using the expansion of the quantum field operator in Eq. (2.18) yields

Hint = g
A∑

i=1

∑

k

1√
2ωk

(
eik·riak + e−ik·ria†k

)
. (2.21)
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The full Hamiltonian H = H0 +Hint can then be expressed as

H =
∑

k

[
ωk

(
a†k +

γ∗k√
ωk

)(
ak +

γk√
ωk

)
− |γk|2

]
,

=
∑

k

(
ωk A

†
kAk − |γk|2

)
, (2.22)

where the complex function γk is defined as

γk ≡ g√
2ωk

A∑

i=1

e−ik·ri , (2.23)

and
Ak ≡ ak +

γk√
ωk

, (2.24)

and similarly for A†
k. The transformation ak, a

†
k → Ak, A

†
k is canonical, since it preserves the

commutation relations, for example
[
Ak , A

†
k′

]
=
[
ak , a

†
k′

]
= δk,k′. Therefore, the spectrum

of eigenvalues of H is the same as that of the unperturbed Hamiltonian H0, but for an overall
shift in the energy. In particular, for the ground-state energy of H we find

Eφ = −
∑

k

|γk|2 = −g
2

2

A∑

i,j=1

∑

k

eik·(ri−rj)

ω2
k

= − g2

8π

A∑

i,j=1

e−µrij

rij
, (2.25)

where use has been made of the following result

∑

k

eik·r

ω2
k

=
∫

d3k

(2π)3
eik·r

k2 + µ2
=

1

4π

e−µr

r
. (2.26)

Hence, in both classical and quantum theories the scalar field energy in the presence of static
particles can be replaced by a sum of Yukawa potentials between the particles.

2.3 Scattering in the Born approximation

We now consider the interaction between two slowly moving particles coupled to the scalar
field. In the first treatment, expecting that the field maintains its ground state during the
slow motion of the particles, we replace its energy by the Yukawa potential between the two
particles. The Hamiltonian of the particles is then given by

H = − 1

2m
(∇2

1 +∇2
2) + vY (r) , (2.27)
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where m is the mass of the particles, including self energies, and the first term is just the sum
of their nonrelativistic kinetic energies. For simplicity, we have assumed that the particles
have the same mass, however, this is not necessary. The interparticle distance is denoted
by r=r1 − r2. The two-body scattering problem for this Hamiltonian can be easily solved
with the phase-shift method. However, here we want to study the way in which the Yukawa
potential describes meson exchange interactions. Therefore we will use perturbation theory
in powers of g2. Note that the Yukawa potential is of order g2.

= +

p −p

p’ −p’

p −p

p’ −p’

p −p

p’ −p’
−qq

Figure 2.1: The vertical thin lines in these diagrams denote particles with indicated momenta,
while the wavy and dashed lines respectively denote the Yukawa potential and the exchanged
mesons. The diagrams depict terms in the perturbation theory described in the text. They can
also be considered as time ordered diagrams in which time increases from bottom to up, and the
potential is instantaneous. The diagram on the left represents the first order Born amplitude for
the scattering by the Yukawa potential. It equals the sum of the one meson exchange amplitudes
shown on the right side.

The scattering of two particles can be easily calculated from the Hamiltonian (2.27) in
the Born approximation, assuming that g2 is small. In the center-of-mass (CM) frame the
particles scatter from initial momenta p1=p, p2=−p to final momenta p′

1=p′, p′
2=−p′ as

illustrated in Fig. 2.1. In this frame the Hamiltonian (2.27) becomes

H = − 1

m
∇2 + vY (r) , (2.28)

and energy conservation implies
p2 = p′ 2 = mE , (2.29)

where E is the total kinetic energy. The initial and final states before and after scattering
are given, respectively, by

|i〉 = eip·r and |f〉 = eip
′·r , (2.30)

and are eigenstates of the kinetic energy operator. The Yukawa potential vY (r) is the per-
turbation. We can choose the z-axis to be in the direction of the initial relative momentum
p, and the final relative momentum p′ to be within a solid angle dΩ around the scattering
angle θ. Using Fermi’s golden rule, the transition rateWfi (probability of transition per unit
time) from initial to final state is obtained as

Wfi = 2π|〈f |vY |i〉|2ρ(E) , (2.31)
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where ρ(E) is the density of final states

ρ(E) =
1

(2π)3
m

2
p′dΩ , (2.32)

and the matrix element reads

〈f |vY |i〉 =
∫
d3r e−ip′·rvY (r)e

ip·r

=
∫
d3r vY (r)e

iq·r ≡ ṽY (q) , (2.33)

i.e. it equals the Fourier transform ṽY (q) of vY (r) in the momentum q,

q = p− p′ , (2.34)

transferred by particle 1 to 2 in the collision. The scattering cross section then follows from

dσ = Wfi/(incident flux) , (2.35)

where in the assumed unit-normalization volume the incident flux equals the relative velocity
2 p/m. Using Eqs. (2.31)–(2.35) and p=p′ from energy conservation, we obtain

(
dσ

dΩ

)

Born

=
(
m

4π

)2

ṽ 2
Y (q) . (2.36)

For the Yukawa potential

ṽY (q) = − g2

µ2 + q2
, (2.37)

and the scattering cross-section is:

(
dσ

dΩ

)

Born

=
g4

(4π)2
m2

(
µ2 + 4p2 sin2 θ/2

)2 , (2.38)

where, for a given scattering angle θ, the magnitude of the momentum transfer has been
expressed as

q = 2 p sin θ/2 . (2.39)

The form of the cross section, Eq. (2.38), for scattering by the Yukawa potential is
similar to the well known Rutherford cross-section for scattering by the Coulomb potential.
In momentum space the Coulomb potential is given by

ṽC(q) =
e2

q2
, (2.40)



12 CHAPTER 2. THE YUKAWA POTENTIAL

and therefore (
dσ

dΩ

)

C

=
e4

(4π)2
m2

16 p4 sin4 θ/2
(2.41)

is the Rutherford cross section. Since the photon has zero mass, the Rutherford cross section
has µ = 0. Note that when q2 ≫ µ2 the Yukawa cross section becomes similar to the
Rutherford. On the other hand, when p2 ≪ µ2, it is spherically symmetric, i.e., independent
of θ. The Coulomb potential in Gauss units, e2/r, differs from that in Heavyside-Lorentz
units, Eq. (2.16), by a factor of 4π. The Rutherford cross section in Gauss units does not
have the factor 1/(4π)2 in Eq. (2.41). Also it is well known that the Born approximation is
exact for the scattering cross section by a Coulomb potential: higher order corrections only
contribute an overall phase factor in the amplitude. However, the Born approximation is
not exact in the general case of a Yukawa potential with µ 6= 0.

2.4 One meson exchange scattering

We will now calculate the scattering cross section up to order g4 directly from meson exchange
processes without using the Yukawa potential. The initial and final states are eigenstates of
the unperturbed Hamiltonian

H0 = − 1

2m

(
∇2

1 +∇2
2

)
+
∑

k

ωk a
†
kak , (2.42)

that describes free particles and mesons. The full H=H0 + Hint, where Hint, given by
Eq. (2.21), provides the coupling between particles and mesons. The first order amplitude
〈f |Hint|i〉 vanishes, because the initial and final states have no mesons. In second order, the
transition probability reads

Wfi = 2π

∣∣∣∣∣
∑

I

〈f |Hint|I〉
1

E − EI
〈I|Hint|i〉

∣∣∣∣∣

2

ρ(E) , (2.43)

where |I〉 are intermediate states with one virtual meson, and H0|I〉=EI |I〉 as usual. Due to
momentum conservation, the meson can only have momentum q or −q and, therefore, only
two intermediate states |I〉 contribute to Wfi. As illustrated in Fig. 2.1, in the first, denoted
by |p′,−p,q〉, particles 1, 2 and the meson have momenta p′, −p and q respectively, while
in the second |p,−p′,−q〉 they have momenta p, −p′ and −q. In the CM frame p2=p′ 2,
and therefore both states have

EI =
p2

m
+ ωq , (2.44)

and the energy denominator E − EI is simply −ωq. Note that this relation is exact only
in the CM frame, corrections to it in other frames are part of relativistic effects. Only the
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e−iq·r1 a†q term in Hint, Eq. (2.21), contributes to the matrix element 〈p′,−p,q|Hint|i〉, given
by

〈p′,−p,q|Hint|i〉 =
g√
2ωq

∫
d3r1 d

3r2 e
−ip′·r1e−iq·r1eip·r1eip·r2e−ip·r2 =

g√
2ωq

, (2.45)

due our unit normalization volume. The remaining three matrix elements give the same
contribution:

〈p,−p′,−q|Hint|i〉 = 〈f |Hint|p,−p′,−q〉 = 〈f |Hint|p′,−p,q〉 = g√
2ωq

, (2.46)

and thus the transition rate reads

Wfi = 2π

∣∣∣∣∣
−g2
ω2
q

∣∣∣∣∣

2

ρ(E) , (2.47)

which is the same as that obtained from the Yukawa potential since it has ṽY (q)=−g2/ω2
q .

One can consider the equality of the transition amplitudes

〈f |vY |i〉 ≡
∑

I

〈f |Hint|I〉
1

E −EI
〈I|Hint|i〉 , (2.48)

as an alternate definition of the Yukawa potential. The diagrams of Fig. 2.1 suggest a physical
interpretation of the scattering in the Born approximation. It occurs due to the absorption
by particle 2 of a meson of momentum q emitted by 1 or by particle 1 absorbing a meson
of momentum −q emitted by 2. The range, of order 1/µ, of the Yukawa potential comes
from the uncertainty principle. The intermediate state |I〉 violates energy conservation by
∆E ∼ ωq ∼ µ. Hence this state can exist only for a time ∆t ∼ 1/µ during which the virtual
meson can propagate through a distance of order 1/µ. Therefore the interaction can occur
only when the inter-particle distance is of order 1/µ or less. As the meson mass µ → 0 one
obtains the familiar 1/r dependence of the Coulomb and gravitational potentials.

2.5 Two meson exchange scattering amplitude

So far we have seen that the Yukawa potential represents the interaction energy for static
sources to all orders in the coupling constant g, and the one meson exchange interaction
between moving particles. However, when the coupling constant g is large, the particles
can exchange many mesons during the scattering. In this case the lowest order one-meson
exchange contribution may not provide a good approximation to the total scattering am-
plitude. In this section we consider the two-meson exchange contribution to the scattering
amplitude to further examine the limitations of representing meson exchange interactions by
potentials.
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(a3)(a2)(a1) (a4)

(b2)(b1) (b3) (b4)

(c2) (c4)(c1) (c3)

(Y2)

p’

p

−p’

−p

q

q1

2p−q q1 −p1

Figure 2.2: Diagrams a1-a4, b1-b4 and c1-c4 show all the two-meson exchange processes that
contribute to the scattering of two particles. The second order Yukawa potential amplitude shown
by diagram Y2 provides an approximation to the sum of the twelve two-meson exchange amplitudes.
This approximation becomes exact for slowly moving particles.

The second order Yukawa potential contribution to scattering is illustrated in diagram
Y 2 of Fig. 2.2. It contains two consecutive momentum transfers, q1 and q2, from particle 1
to 2, with a two-particle intermediate state |I〉. Its contribution to the scattering amplitude

is denoted as A
(2)
Y (q1,q2), and reads

A
(2)
Y (q1,q2) = 〈f |vY |I〉

1

E − EI

〈I|vY |i〉 =
−g4
ω2
q1ω

2
q2

1

2 δ1
, (2.49)

where we have defined the energy denominator

2 δ1 = EI −E =
1

m

(
q21 − 2p · q1

)
. (2.50)

In terms of meson exchanges this amplitude is given by the sum of all processes in which
the first meson with momentum q1 (−q1) emitted by particle 1 (2) is absorbed by 2 (1), and
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a second meson with momentum q2 (−q2) emitted next by 1 (2) is absorbed by 2 (1). The
twelve possible processes are shown by diagrams a1 to c4 in Fig. 2.2. In processes a1 to a4,
the second meson is emitted after the first is absorbed, while in b1 to c4 it is emitted before.
In b1 to b4 (c1 to c4), the second is absorbed after (before) the first.

The contributions of two-meson exchange diagrams to the scattering amplitude follow
from

〈f |Hint|I3〉
1

E − EI3

〈I3|Hint|I2〉
1

E −EI2

〈I2|Hint|I1〉
1

E − EI1

〈I1|Hint|i〉 , (2.51)

where the intermediate states |I1〉, |I2〉 and |I3〉 can be read off the diagrams a1 to c4. The
calculation of the sum of two-meson exchange contributions is rather simple. We define δ2
similarly to δ1 but with q2 replacing q1, and note that in all the diagrams a1 to c4 the
product of the matrix elements of Hint is given by g4/(4ωq1ωq2). We obtain

A
(2)
M (q1,q2) = − g4

4ωq1ωq2

{
4

2 δ1 (δ1 + ωq2)(δ1 + ωq1)
+

2

(δ1 + ωq2)(ωq1 + ωq2)(δ1 + ωq1)

+

[
1

(δ2 + ωq2)(ωq1 + ωq2 + δ1 + δ2)(δ2 + ωq1)
+ (q1 ⇀↽ q2)

]

+

[
1

(δ1 + ωq1)(ωq1 + ωq2)(δ2 + ωq1)
+ (q1 ⇀↽ q2)

]

+

[
1

(δ1 + ωq2)(ωq1 + ωq2 + δ1 + δ2)(δ2 + ωq2)
+ (q1 ⇀↽ q2)

]}
, (2.52)

where diagrams a1 to a4, and b1 and b4, give the contributions on the first line, diagrams b2
and b3, c1 and c4, and c2 and c3, give the contributions on the second, third, and fourth line
of Eq. (2.52), respectively. In the static limit (m large), δi ≪ ωq1 or ωq2 and we may expand
the two-meson exchange scattering amplitude in powers of δi/ωq, which gives

A
(2)
M (q1,q2) ≃ A

(2)
Y (q1,q2) up to terms quadratic in δi . (2.53)

The processes a1–a4 are called meson exchange ladders. In these processes we have inter-
mediate states without mesons as in the second order Yukawa potential scattering diagram
Y 2 of Fig. 2.2. The scattering amplitude in the meson exchange ladder approximation is
denoted by A

(2)
MEL(q1,q2). Summing the contributions of processes a1–a4 leads, in the static

limit, to

A
(2)
MEL(q1,q2) = A

(2)
M (q1,q2)

[
1− δ1(ωq1 + ωq2)

ωq1ωq2

+ ...

]
, (2.54)

where the ellipsis represent terms quadratic in δ1. In this respect, the Yukawa potential
provides a better approximation to the full two-meson exchange scattering amplitude than
the meson exchange ladder approximation.
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2.6 Corrections to the Yukawa potential

All two meson exchange processes in which q1+q2=q contribute to the scattering amplitude
with momentum transfer q. Thus the error in the Yukawa potential approximation of the
two-meson scattering amplitude is given by

D(2)(p,q) =
∫

d3q1
(2π)3

[
A

(2)
M (q1,q2 = q− q1)− A

(2)
Y (q1,q2 = q− q1)

]
. (2.55)

This error depends on both p and q through δi and ωq2. We can define a two-meson exchange
potential v(2) such that

〈f |v(2)|i〉 = D(2)(p,q) , (2.56)

and the two-body potential

v = vY + v(2) (2.57)

then offers a better approximation than the Yukawa; it correctly reproduces the one- and
two-meson exchange contributions to the scattering amplitude. Unlike the vY potential,
v(2) depends upon both p and q. We can either consider it as a momentum dependent
interaction, or as a nonlocal interaction v(2)(r′, r), defined as

v(2)(r′, r) =
∫

d3p

(2π)3
d3q

(2π)3
eip·(r

′−r)e−iq·r′D(2)(p,q) . (2.58)

We should note that relativistic effects also generate momentum dependent and nonlocal
interactions.

By carrying out this process further we can define l ≥ 2 meson exchange potentials v(l)

such that the scattering amplitude obtained by using the two-body potential

v = vY +
n∑

l=2

v(l) , (2.59)

correctly reproduces the sum of all amplitudes having up to n exchanged mesons and pro-
vides a good approximation for those having more than n exchanged mesons. This procedure
is obviously useful when the potentials v(l) become smaller as l increases. The v(l) is propor-
tional to g2l, and thus the series converges trivially when the coupling constant g is small. It
also converges when the mass of the interacting particles is large because of the 1/m factors
contained in the v(l). The ranges of the v(l) are proportional to 1/(lµ). Thus the v(l) form a
series of interactions with decreasing ranges.

The above discussion of the two-meson exchange potential is not directly applicable to
nuclear forces. It is applicable when the particles and fields are elementary. However, both
nucleons and mesons are composite objects with internal degrees of freedom and excitations,
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therefore many additional processes (some of which are discussed in the next chapter), con-
tribute to the D(2) amplitude. Models of the interaction potential vij between nucleons i
and j are obtained by reproducing the observed two-nucleon scattering data, which naturally
contain all possible many-meson exchange amplitudes. In contrast, the corrections to the
Coulomb interaction between electrons due to two-photon exchange processes can be calcu-
lated using the techniques presented above, since the electrons and photons are elementary
particles without internal degrees of freedom.

(a) (b)

p

q

p−q

−p

q−p

p q

q−pp−q

−p

Figure 2.3: Diagrams (a) and (b) respectively show the vertex and vacuum polarization corrections
to the one meson exchange interaction between elementary particles.

2.7 Vertex corrections and vacuum polarization

Additional corrections to the Yukawa potential, of order g4, are obtained from vertex cor-
rections and vacuum polarization diagrams shown in Fig. 2.3. These corrections change the
shape of the Yukawa potential at small r, and are important in both quantum electro- and
chromo-dynamics. Their role in shaping nuclear forces is not obvious. Nucleons and mesons
have a finite size. The short distance behavior of meson exchange interactions between nucle-
ons is modified by their size and internal structure. It is likely that only the long-range parts
of nuclear forces can be conveniently described as due to exchange of mesons. In practice,
the short range interaction between nucleons is obtained from experimental data along with
the two-pion exchange interaction.
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Chapter 3

Pion-Exchange Interactions

Pions are the lightest of all the mesons, and thus responsible for the longest range part of the
strong forces among nucleons. Their existence as the carriers of nuclear forces was predicted
by Yukawa in 1935, and they were first observed in 1947. There is strong evidence for the
existence of the one-pion-exchange potential in the nucleon-nucleon experimental scattering
data, and pion-exchange interactions can account for much of the potential energy of light
nuclei, and possibly all nuclei.

3.1 Pion-nucleon coupling

Pions are pseudoscalar mesons with spin-parity assignment 0−, and their three charge states,
π+, π0, π−, are regarded as members of an isospin t=1 triplet with tz=+1, 0, –1, respectively.
The masses of the charged pions, mπ+=mπ−=139.57 MeV, are a bit larger than the neutral
pion massmπ0=134.98 MeV. This small mass difference is presumably due to electromagnetic
forces which violate the isospin symmetry of the strong interaction. To begin with, we ignore
this difference along with that between the neutron and proton mass (939.57 MeV and 938.27
MeV, respectively), and use mπ and mN to denote the average pion and nucleon mass, and
assume isospin symmetry; its breaking is considered later in Sec. 3.16.

It is convenient to express the pion field operator φ̂(r) as a vector in isospin space with
three “Cartesian” components a=x, y, z:

φ̂a(r) =
∑

k

1√
2ωk

(
akae

ik·r + a†k ae
−ik·r

)
. (3.1)

The annihilation operators of the charged and neutral pions are related to the Cartesian
ak a’s in the above field operator by

ak± =
1√
2
(ak x ∓ i ak y) , ak 0 = ak z , (3.2)

19



20 CHAPTER 3. PION-EXCHANGE INTERACTIONS

and the charged and neutral pion field operators are defined as

φ̂±(r) =
1√
2

[
φ̂x(r)± i φ̂y(r)

]
=
∑

k

1√
2ωk

(
ak∓e

ik·r + a†k±e
−ik·r

)
, (3.3)

φ̂0(r) = φ̂z(r) , (3.4)

so that φ̂+,0,− create π+,0,− or annihilate π−,0,+, respectively.
The spin 1/2 and isospin 1/2 operators of the nucleon are denoted as s and t with s = σ/2

and t = τ/2, where σ and τ are Pauli matrices operating in configuration and isospin space,
respectively. The isospin matrices are taken as

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
, (3.5)

and proton and neutron states, defined as

|p〉 =
(

1
0

)
, |n〉 =

(
0
1

)
, (3.6)

are eigenstates of τz (or, equivalently, tz) corresponding to eigenvalues ±1 (±1/2), respec-
tively.

The matrices above also represent the Pauli spin matrices σx, σy, and σz in the basis
that makes σz diagonal. Its eigenstates, correspoding to eigenvalues ±1 (or ±1/2 of sz),
are denoted as | ↑〉 and | ↓〉, and are defined in analogy to Eq. (3.6); they are called Pauli
spinors. Thus the four possible spin-isospin states of a nucleon are | ↑ p〉, | ↓ p〉, | ↑ n〉, and
| ↓ n〉.

The operator τ · φ̂, defined as (the r-dependence is suppressed here for brevity)

φ̂ · τ = φ̂xτx + φ̂yτy + φ̂zτz

= φ̂+τ− + φ̂−τ+ + φ̂0τ0 , (3.7)

with

τ± =
1√
2
(τx ± i τy) , τ0 = τz , (3.8)

being a scalar in isospin space, conserves the total isospin of the pion-nucleon system, and
therefore its total charge. Note that the operators τ+ and τ− change neutrons into protons
and viceversa, i.e.

τ+|p〉 = 0 , τ+|n〉 =
√
2|p〉 , τ−|n〉 = 0 , τ−|p〉 =

√
2|n〉 , (3.9)

and hence the combination φ̂+τ− (φ̂−τ+) in Eq. (3.7) either creates a π+ (π−) or annihilates
a π− (π+) while converting a proton (neutron) into a neutron (proton). The combination
φ̂0τz, instead, creates or annihilates a π

0 without changing the nucleon charge.
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The interaction of the pion field with a nonrelativistic nucleon at position r is described
by the interaction Hamiltonian

HπNN = −fπNN

mπ

σ ·
[
∇φ̂(r) · τ

]
, (3.10)

where fπNN is the dimensionless pion-nucleon coupling constant. Note that the field φ̂ has
dimensions of energy and ∇/mπ is dimensionless. The HπNN is a scalar in configuration
space, since it contains a dot-product of two pseudo-vectors, σ and ∇φ̂(r) · τ . It is also
a scalar in isospin space, and thus the HπNN interaction conserves momentum, angular
momentum, parity, and isospin.

Let the nucleon be at the origin so that HπNN contains the term ∇φ̂a(r) evaluated at
r=0. The plane waves in the pion field operator, Eq. (3.1), can be expanded in eigenfunctions
of angular momentum:

eik·r = 4π
∞∑

l=0

l∑

m=−l

il Y ∗
lm(θk, φk) jl(kr) Ylm(θ, φ) , (3.11)

where θk, φk and θ, φ are the polar angles of k and r, respectively. Only the l = 1 pion waves,
called P-waves in spectroscopic notation, have a finite gradient at the origin, and thus HπNN

describes the absorption and emission of pions having a unit orbital angular momentum
about the nucleon. These pions have even overall parity, since the intrinsic negative parity
of pions combines with the negative parity of P-waves.

Since angular momentum and parity are conserved by the strong interaction, only the
l=1 π-N state can couple to the nucleon. Conservation of parity requires l be odd, and for
l > 1 the total angular momentum cannot be 1/2. Therefore, in the limit k → 0 all allowed
strong pion-nucleon coupling Hamiltonians reduce to the form given in Eq. (3.10). The most
general nonrelativistic HπNN is obtained by allowing fπNN to depend on the pion momentum
k. In relativistic theories the π-N coupling is not unique.

3.2 The one pion-exchange potential

The one-pion-exchange potential (OPEP) between two nucleons, denoted by vπ, can be easily
calculated from the one-pion-exchange scattering amplitude as discussed in Sec. 2.4. The
two diagrams contributing to this amplitude are as shown in Fig. 2.1. Thus, Eq. (2.48) for
the scalar-meson-exchange Yukawa potential reads

〈f |vπ|i〉 ≡
∑

I

〈f |HπNN |I〉
1

E − EI

〈I|HπNN |i〉, (3.12)

in the case of OPEP. The main difference is that HπNN contains spin, isospin, and gradient
operators absent in the simple Hint considered in Chapter 2.
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We denote the initial and final two-nucleon states by

|i〉 = |p, χ1;−p, χ2〉 , |f〉 = |p′, χ′
1;−p′, χ′

2〉 , (3.13)

where χ1,χ2 and χ
′
1,χ

′
2 represent the spin-isospin states of nucleons 1 and 2, before and after

scattering. In the first process shown in Fig. 2.1, a pion of momentum q = p−p′ and charge
α=+, 0 or – is emitted by nucleon 1. In this case, the intermediate state |I〉 is given by

|I〉 = |p′, χ′
1;−p, χ2;q, α〉 , (3.14)

and the matrix element

〈I|HπNN |i〉 = i
fπNN

mπ

1√
2ωq

〈χ′
1|σ1 · q τ1,−α|χ1〉 (3.15)

is obtained by noting that here the gradient in HπNN operates on the coefficient e−iq·r1 of
the pion creation operator in φ̂α(r1), and that the isospin operator τ1,−α accompanies the
creation of a pion of charge α by nucleon 1. The spatial integrals over r1 and r2 give unit
factors due to our unit normalization volume. The second matrix element is given by

〈f |HπNN |I〉 = −ifπNN

mπ

1√
2ωq

〈χ′
2|σ2 · q τ2,α|χ2〉 , (3.16)

since here the gradient in HπNN operates on the coefficient eiq·r2 of the annihilation operator,
and the isospin operator τ2,α goes along with the absorption of a pion of charge α by nucleon
2. The energy denominator in Eq. (3.12) is just −ωq, and thus the contribution of the first
process to the scattering amplitude is

−f
2
πNN

m2
π

1

2ω2
q

〈χ′
1, χ

′
2|σ2 · qσ1 · q (τ2,+τ1,− + τ2,0τ1,0 + τ2,−τ1,+) |χ1, χ2〉 , (3.17)

where the three isospin terms are associated with π+-, π0-, and π−-exchange, respectively.
Note that

τ 1 · τ 2 = τ2,+τ1,− + τ2,0τ1,0 + τ2,−τ1,+ , (3.18)

and that the second process, in which the exchanged pion has momentum −q, leads to an
identical contribution to the scattering amplitude. Thus, from the total scattering amplitude,
we define the momentum-space OPEP as

ṽ π
12(q) = −f

2
πNN

m2
π

σ1 · qσ2 · q
q2 +m2

π

τ 1 · τ 2 , (3.19)

i.e. as an operator acting in the spin-isospin space of the two nucleons.
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The configuration space vπ12(r) is obtained from the Fourier transform

vπ12(r) =
∫

d3q

(2π)3
e−iq·r ṽ π

12(q) =
f 2
πNN

m2
π

τ 1 · τ 2 σ1 ·∇σ2 ·∇
∫

d3q

(2π)3
e−iq·r

q2 +m2
π

=
f 2
πNN

m2
π

τ 1 · τ 2 σ1 ·∇σ2 ·∇yπ(r) . (3.20)

The Laplacian, ∇2yπ(r), of the Yukawa function,

yπ(r) =
∫ d3q

(2π)3
e−iq·r

q2 +m2
π

=
e−mπr

4π r
, (3.21)

has a δ-function singularity at the origin, since
(
−∇2 +m2

π

)
yπ(r) = δ(r) . (3.22)

Gradients in Eq. (3.20) have to be evaluated retaining this singularity. To this end, it is first
convenient to express the derivatives in the form

σ1 ·∇ σ2 ·∇ = σ1,aσ2,b

[(
∇a∇b −

δa,b
3

∇2

)
+
δa,b
3

∇2

]
, (3.23)

where the sum over the repeated indices a, b=x, y, z is understood, and then note that

(
∇a∇b −

δa,b
3

∇2

)
yπ(r) = −

∫ d3q

(2π)3

(
qaqb −

δa,b
3
q2
)

e−iq·r

q2 +m2
π

. (3.24)

The expression in parenthesis on the r.h.s. of the equation above is a symmetric and traceless
second-rank tensor, whose integral over the polar angles θq, φq is zero. After expanding the
plane wave in eigenfunctions of angular momentum using Eq. (3.11)—or rather its complex
conjugate—the contribution proportional to j0(qr), which is responsible for the δ-function
singularity in ∇2yπ(r), is found to vanish. Thus, we obtain:

σ1 ·∇σ2 ·∇yπ(r) =
(
σ1 · r̂ σ2 · r̂−

1

3
σ1 · σ2

)(
m2

π +
3mπ

r
+

3

r2

)
yπ(r)

+
1

3
σ1 · σ2

[
m2

π yπ(r)− δ(r)
]
, (3.25)

where r̂ denotes the unit vector r/r and in the second line use has been made of Eq. (3.22).
The OPEP can now be cast in its standard form,

vπ12(r) =
f 2
πNN

4π

mπ

3
τ 1 · τ 2

{
Tπ(r)S12 +

[
Yπ(r)−

4π

m3
π

δ(r)
]
σ1 · σ2

}
, (3.26)
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by defining the tensor operator S12,

S12 = 3σ1 · r̂σ2 · r̂− σ1 · σ2 , (3.27)

and the dimensionless functions Yπ(r) and Tπ(r),

Yπ(r) =
e−mπr

mπr
, (3.28)

Tπ(r) =
(
1 +

3

mπr
+

3

mπ
2r2

)
Yπ(r) . (3.29)

The OPEP has a range of 1/mπ ∼ 1.4 fm. Within this range (mπr) < 1, and the function
Tπ(r) is larger than Yπ(r) by a factor > 7. The tensor part of OPEP, proportional to the
operator S12, is therefore much larger than its Yukawa part with the Yπ(r) radial dependence.
The volume integral of the Yukawa function,

∫
d3r Yπ(r) =

4π

mπ
3
, (3.30)

equals the strength of the contact interaction containing the δ(r) function. Therefore the
volume integral of the σ1 · σ2 term, i.e. the spin-spin interaction, vanishes.

3.3 Properties of the tensor operator

The Pauli identity, valid for any two vectors or vector operators A and B,

σ ·Aσ ·B = A ·B + iσ ·A×B (3.31)

where a 2×2 unit matrix multiplying the scalar product on the r.h.s. is not explicitly in-
dicated, can be used to derive the following two useful properties of the tensor operator
S12:

σ1 · σ2 S12 = S12 σ1 · σ2 = S12 , (3.32)

S2
12 = 6 + 2σ1 · σ2 − 2S12 . (3.33)

From the first of these it also follows that

[S12 , σ1 · σ2] = 0 . (3.34)

Let S (not to be confused with the tensor operator S12) denote the total spin of the
two interacting nucleons. It can have values 0 and 1, and the projection operators for these
two-nucleon spin states are given by:

PS=0 =
1

4
(1− σ1 · σ2) , (3.35)

PS=1 =
1

4
(3 + σ1 · σ2) . (3.36)
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They obey the standard projection operator relations,

PS=0 + PS=1 = 1 , (3.37)

PS PS′ = PS δS,S′ , (3.38)

and Eqs. (3.32) and (3.34) then imply

[PS , S12] = 0 , S12 P0 = 0 , S12 P1 = S12 . (3.39)

The tensor force thus acts only in the S=1 (spin-triplet) states; it is zero in the S=0 (singlet)
state.

3.4 One pion-exchange potential in pair spin-isospin

channels

The one pion-exchange potential (OPEP) is not spherically symmetric. The expectation
value of the tensor operator for two parallel-spin nucleons at distance r is given by

〈↑, ↑ |S12| ↑, ↑〉 = 3 cos2θ − 1 = 2P2(cos θ) , (3.40)

where θ is the polar angle between r, the z-axis used to quantize the spin projections, and
P2(x) is the Legendre polynomial of order 2. The expectation values are independent of the
azimuthal angle ϕ of r. Using this result, we obtain:

〈S,M=1,±1; r|vπ|S,M=1,±1; r〉= f 2
πNN

4π

mπ

3
τ 1 · τ 2

[
2 Tπ(r)P2(cosθ) + Yπ(r)−

4π

m3
π

δ(r)

]
.

(3.41)
In the |S,M = 0〉 state the OPEP expectation value is given by

〈S,M=1, 0; r|vπ|S,M=1, 0; r〉 = f 2
πNN

4π

mπ

3
τ 1 · τ 2

[
−4 Tπ(r)P2(cosθ) + Yπ(r)−

4π

mπ
3
δ(r)

]
.

(3.42)
At finite values of r, the sign of the expectation value is dominated by that of the tensor
potential, since Tπ(r) > Yπ(r).

The potential is symmetric under r → −r (θ → π− θ and ϕ→ ϕ+π), and as a function
of θ it has maxima or minima at θ = 0 and π/2. The vπT,S=1,M(r, θ) has opposite signs at
θ = 0 and π/2, and it can be verified that

vπT,S=1,M=±1(r, θ = 0) = vπT,S=1,M=0(r, θ = π/2) . (3.43)

The OPEP in T = 0 and 1, S = 1 states is shown in Figs. 3.1 and 3.2.
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Figure 3.1: The potential in the T = 0, S = 1, M = ±1 and 0 states as a function of polar
coordinates r and θ. It is independent of the azimuthal angle ϕ, and is given for θ = 0 and
π/2. The dashed lines show the OPEP, and the solid lines give the static part of the Argonne
v18 (AV18) potential in the 3S1-

3D1 partial waves coupled by the tensor force.

The vπ in T = 0 states has similarities with the interaction between magnetic dipoles
discussed in the next section, and its large angular anisotropy has observable effects on the
structure of nuclei. We obtain:

vπT=0,S=1,M(r, θ) = −3 vπT=1,S=1,M(r, θ) , (3.44)

from the values of −3 and 1 of τ i · τ j in T = 0 and 1 states. The sum of the expectation
values of the tensor potential in the S = 1;M = 1, 0,−1 states vanishes.

The tensor operator is identically zero in the S = 0 states. Thus the OPEP has the
simpler form

〈S,M = 0, 0; r|vπ|S,M = 0, 0; r〉 = −f
2
πNN

4π
mπ τ 1 · τ 2

[
Yπ(r)−

4π

mπ
3
δ(r)

]
, (3.45)

in S = 0 states. It is shown in Figs. 3.3 and 3.4. It has the smallest magnitude in T, S = 1, 0
states and the largest in 0,1.
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Figure 3.2: The potential in the T = 1, S = 1, M = ±1 and 0 states as a function of polar
coordinates. The solid lines give the static part of the AV18 potential in the 3PJ partial
waves with J = 0, 1 and 2. See caption of Fig. 3.1 for notation.

The observed NN scattering data supports the assumption that the long-range part of
the strong interaction between nucleons is given by OPEP. In 1991 the Nijmegen group
fitted that data assuming that the long-range part of vij is given by the exchange of a
pseudoscalar-isovector meson, i.e. having the quantum numbers of the pion, but with an
unknown mass. They found that the best fit required the unknown mass to be the pion
mass with an uncertainty of few MeV.

The description of the long-range parts of the two-nucleon interaction (and current op-
erators, described in later chapter) is therefore relatively simple. It depends on only one
parameter, the pion-nucleon coupling constant. The value of this coupling constant, ob-
tained in 1993, is

f 2
πNN

4π
= 0.075 . (3.46)

The same value is obtained from analysis of NN or πN scattering data.
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Figure 3.3: The OPEP in T, S = 1, 0 states (dashed line) and the AV18 in the 1S0 partial
wave.

The rms radius of the Yukawa part of vπij is given by

Rrms(OPEPY) =

[∫
d3r r2 Yπ(r)∫
d3r Yπ(r)

]1/2
=

√
6

mπ
∼ 3.5 fm. (3.47)

It is quite large due to the long exponential tail of Yπ(r). Figures3.1 to 3.4 show v(r) without
the r2 phase space factor. They therefore suppress the importance of the long-range parts
of v(r).

The OPEP is dominated by its tensor part which has a 1/r3 divergence at small r; this
must be cut off to give a usable potential. Its rms radius is sensitive to the short-range
cutoff used for vπ, nevertheless it is smaller than that of the Yukawa part. The experimental
value of the effective range of nuclear potentials, obtained from low-energy scattering data,
depends on the spin-isospin state of the two nucleons. In states with total orbital angular
momentum L = 0, which sample the whole of the two-body interaction, the values of the
total spin and isospin are restricted to be 0,1 and 1,0 by the antisymmetry of the two-
nucleon wave function. The experimental values of the effective-range parameters in these
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Figure 3.4: The OPEP in the T, S = 0, 0 state (dashed line) and the AV18 in the 1P1 partial
wave.

two states are respectively 2.81(5) fm and 1.760(5) fm. However, the effective range can be
very different from the rms radius of the corresponding potential.

Second and higher order terms of vπij are taken into account when the Schrödinger equation
HΨ = EΨ is solved with a Hamiltonian including OPEP. They contain two-body terms
having (vπij)

n≥2, as well as three- and higher-body terms having vπij v
π
jk, . . . .

Nuclei are bound states of nucleons, in which, as emphasized by Bethe and Salpeter,
the nuclear potentials contribute in all orders. For example, it is not possible to quantify
the contributions of the Coulomb potential to the binding energy of the hydrogen atom in
first, second, third, . . . orders of perturbation theory. However, one can estimate the total
Coulomb energy of the hydrogen atom as the expectation value of the Coulomb potential in
its ground state. One can similarly calculate the total contribution of OPEP to the potential
energy of the nucleus. It is denoted by 〈vπ〉, and depends somewhat on the cutoffs used to
regulate the divergence of Tπ(r) at small r. However, it provides over half of the potential
energy in light nuclei and nuclear matter at equilibrium density, using plausible short-range
behaviors.
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3.5 The interaction between magnetic dipoles

The interaction between two magnetic dipoles is probably the most familiar example of the
tensor force. It can be derived just as OPEP, from the contribution of the one-photon-
exchange interaction to the scattering amplitude of two dipoles. The interaction of a dipole
at position r with a magnetic field is given by

HD = −µσ · B̂(r) , (3.48)

where µ is the magnetic moment of the particle, which we assume to have spin 1/2, and
B̂(r) is the quantized magnetic field,

B̂(r) =
∑

k

2∑

α=1

i√
2ωk

k× êα
(
akα e

ik·r − a†kα e
−ik·r

)
. (3.49)

The unit polarization vectors ê1 and ê2 form along with k̂ a right-handed orthonormal system
of axes, ê1 × ê2=k̂. Thus the interaction Hamiltonian HD can be written as

HD = −i µ
∑

k

2∑

α=1

êα · (σ × k)√
2ωk

(
akα e

ik·r − a†kα e
−ik·r

)
. (3.50)

Using this interaction in place of HπNN in Eq. (3.12), and intermediate states |I〉 containing
a photon of momentum ±q, we obtain the scattering amplitude, or equivalently the dipole-
dipole interaction ṽDD

12 (q) in momentum space, as

ṽDD
12 (q) = −µ

2

q2
∑

α=1,2

(σ1 × q) · êα (σ2 × q) · êα

= −µ
2

q2
(σ1 × q) · (σ2 × q)

=
µ2

q2

(
σ1 · qσ2 · q − q2 σ1 · σ2

)
. (3.51)

It has a σ1 ·σ2 term absent in the OPEP ṽ π
12(q), Eq. (3.19). The configuration-space version

of the dipole-dipole potential is obtained by Fourier transform as in Sec. 3.2:

vDD
12 (r) = −µ2

(
σ1 ·∇ σ2 ·∇ − σ1 · σ2 ∇2

) 1

4π r

= −µ2

4π

[
1

r3
S12 +

8π

3
δ(r) σ1 · σ2

]
. (3.52)

The total angular momentum of the hydrogen atom having its electron in the 1s1/2 state
is given by the sum of the spins of the electron and the proton, and can have values of 0
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and 1. The degeneracy between these two states of the hydrogen atom is removed by the
interaction between the magnetic dipole moments of the electron and the proton. In first
order perturbation theory, valid for this hyperfine splitting, the tensor part of vDD

12 does not
contribute because of spherical symmetry of the electron wave function, and the σ1 ·σ2 part
lowers the S = 0 state below the S = 1. The well known 21 cm microwave radiation used by
radio astronomers to survey the hydrogen clouds in our galaxy is emitted in the transition
from the S = 1 state to the ground state. The energy of this transition is accurately predicted
by electron-proton dipole-dipole interaction obtained from Eq. (3.52) after replacing µ2 by
µpµe the product of the magnetic moments of the proton and electron. This observation
confirms the existence and the strength of the δ-function term in the vDD

12 .
It is unlikely that the effects of this term in OPEP, Eq. (3.26), can ever be observed

experimentally. The electron penetrates the proton without perturbing it excessively, and
interacts with the proton’s magnetic moment electromagnetically. When two nucleons inter-
penetrate each other, however, many strong forces besides OPEP can contribute, and the
nucleons’ quark substructure may become strongly perturbed. Therefore the δ-function term
in OPEP is often removed from the vπ12 and considered together with other short range terms
in nuclear forces.

3.6 Pion field of classical sources

In Sec. 2.1 the nonrelativistic scalar meson exchange Yukawa potential is derived using
classical mechanics. Here we outline a similar derivation of OPEP. The pion fields φa(r, t),
a=x, y, z, are treated classically without field quantization, and the quantum operators σ

and τ in the pion-nucleon interaction Hamiltonian, Eq. (3.10), are replaced by classical
spin and isospin vectors, denoted by σ and τ . The classical Lagrangian density L(φa,∇φa)
describing the static pion field φa(r) (hence, the overline over L and φa) coupled to sources
σi, τ i at ri with i=1, . . . , A is then given by

L(φa,∇φa) = −1

2

∑

a

[
| ∇φa(r) |2 +m2

πφ
2

a(r)
]
+
fπNN

mπ

A∑

i=1

δ(r− ri)τ i,a σi ·∇φa(r) , (3.53)

and the sum over repeated indices a is understood. The Euler-Lagrange equations for the
pion fields (in the static limit) read

∇2φa(r)−m2
πφa(r) =

fπNN

mπ

A∑

i=1

τ i,a σi ·∇δ(r− ri) , (3.54)

and its solution can be expressed as a superposition of fields φj,a of single sources σj, τ j at
rj as for the classical scalar meson or electrostatic field,

φa(r) =
A∑

j=1

φj,a(r) . (3.55)
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Each field φj,a(r) satisfies a partial differential equation identical to Eq. (3.54) except that on
the r.h.s. only the source term with i = j is present. It can be easily solved by introducing
the Fourier transforms

φj,a(r) =
∫ d3q

(2π)3
e−iq·rφ̃j,a(q) , (3.56)

δ(r− rj) =
∫

d3q

(2π)3
e−iq·(r−rj) . (3.57)

We find:

φj,a(r) = i
fπNN

mπ
τ j,a

∫
d3q

(2π)3
σj · q
q2 +m2

π

e−iq·(r−rj)

= −fπNN

mπ
τ j,aσj ·∇

e−mπ |r−rj|

4π |r− rj|
. (3.58)

The energy of the static pion field can be simplified as for the scalar field by making use
of the Euler-Lagrange equations, namely

Eφ = −
∫
d3rL(φa,∇φa) = −1

2

fπNN

mπ

∫
d3r

A∑

i=1

δ(r− ri) τ i,a σi ·∇φa , (3.59)

which can be expressed as

Eφ = −1

2

f 2
πNN

m2
π

A∑

i,j=1

τ i · τ j

∫
d3q

(2π)3
σi · q σj · q
q2 +m2

π

e−iq·(ri−rj)

=
A∑

i<j=1

∫
d3q

(2π)3
ṽ π
ij(q) + self energy terms . (3.60)

The above ṽ π
ij(q) is equal to that obtained earlier in Eq. (3.19) with perturbation theory,

except for the replacement of the quantum operators σ and τ by the classical vectors σ and
τ . Nuclear many-body theory is more challenging due to the presence of these operators in
OPEP. For example, in quantum mechanics the Coulomb and the Yukawa potentials, being
simple functions of the interparticle distances, commute, namely [vij(rij) , vik(rik)] = 0, while
OPEP’s do not, [vπij(rij) , v

π
ik(rik] 6= 0.

3.7 The ∆-resonance in pion-nucleon scattering

Due to the relatively long life-time of charged pions (≃ 2.6 10−8 sec), their scattering by
protons can be studied in the laboratory. The observed total and elastic π+p and π−p
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scattering cross-sections are tabulated by the Particle Data Group and shown in Figs. 3.5
and 3.6 respectively. At lower energies, the π+p scattering is purely elastic; it becomes
inelastic at higher energies due to particle production. For example, reactions such as π+ +
p→ π0+ π+ + p contribute to the inelastic π+p cross-section above their threshold energies.
In contrast the charge-exchange reaction π−+p→ π0+n is allowed at all energies, neglecting
the small difference between the masses of the proton and neutron, and between charged
and neutral pions. Therefore π−p scattering has elastic and inelastic parts at all energies.
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Figure 3.5: The total and elastic π+p scattering cross sections

In most pion-nucleon scattering experiments the target proton is at rest in the laboratory
frame, and its energy-momentum four vector pµ is (mp, 0), while the incident pion energy-
momentum is qµ = (ωq,q). The total energy-momentum,

P µ = pµ + qµ = (mp + ωq,q) , (3.61)

is conserved. The invariant mass of the π + p state is denoted by W with

W 2 = P µPµ = (mp + ωq)
2 − q2 , (3.62)

and W 2 is also called the Mandelstam variable s. Both the variables, |q| in the laboratory
frame and s, are used in Figs. 3.1 and 3.2.

At energies belowW ≃ 2 GeV, pion-nucleon scattering is dominated by resonances which
occur when the invariant mass W equals the mass of an excited state of the nucleon. They
are similar to the resonances seen in the scattering of photons by atoms when the photon



34 CHAPTER 3. PION-EXCHANGE INTERACTIONS

1 2 3 4 5 7 10 20 30 40 50
1.0

3.0

5.0
7.0
10.

30.

50.
70.
100

300

W2 (GeV2)

C
ro

ss
 S

ec
tio

n 
(m

b)

π-p

σTot

σElas

.1 .2 .4 .6 .8 1 2 4 6 8 10 20

|q| (GeV/c)

Figure 3.6: The total and elastic π−p scattering cross sections

energy equals the excitation energy of an atomic state. The widths of these resonances are
proportional to their decay rates. Due to its large strength and low energy, the ∆-resonance
at W = 1.24 GeV plays an important role in pion-exchange interactions between nucleons.
The spin and isospin of this resonance have values of 3/2 each, which corresponds to the spin
and isospin projections of all the three quarks being parallel in the ∆-state. In the simple
constituent quark model, this resonance occurs when the spin and isospin of a quark in the
nucleon are flipped by the absorption of the pion of the right energy.

At larger values ofW , where s=W 2 > 10 GeV2, the total cross-section is mostly inelastic,
relatively independent of energy, and nearly the same for π+p and π−n. These features
indicate that at very large energies π −N scattering may be more easily considered as that
of quarks, anti-quarks and gluons inside the pion by those in the nucleon.

Several features of the ∆-resonance can be understood from isospin conservation in strong
interactions. Both the π+p and ∆++ states have total isospin T = 3/2 and Tz = 3/2. The
π+p scattering cross section therefore has a large peak of ≃ 210 mb (10−3 barns) at the
∆-resonance energy, as can be seen in Fig. 3.5. In contrast to the π+p, the π−p state is
not an eigenstate of total isospin T ; however, it is an eigenstate of Tz with eigenvalue −1/2.
The pion-nucleon eigenstates of T and Tz, denoted by |πN ;T, Tz〉 are easily obtained by
using Clebsch-Gordan coefficients to add the pion and nucleon isospins. The states having
Tz = −1/2 are:

|πN ;T = 3/2, Tz = −1/2〉 =
√
2/3 |π0n〉 +

√
1/3 |π−p〉 , (3.63)
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|πN ;T = 1/2, Tz = −1/2〉 =
√
1/3 |π0n〉 −

√
2/3 |π−p〉 , (3.64)

and superposing them we obtain:

|π−p〉 =
√
1/3 |πN ;T = 3/2, Tz = −1/2〉 −

√
2/3 |πN ;T = 1/2, Tz = −1/2〉 . (3.65)

Only the T = 3/2 part of the π−p state can form the ∆0-resonance having T = 3/2, Tz =
−1/2. Therefore the cross-section at the ∆-peak in π−p scattering (Fig. 3.2) is ≃ 70 mb,
i.e. a third of the peak π+p cross-section (Fig. 3.1). Moreover, the formed ∆0 decays into
the pion-nucleon state |πN ;T = 3/2, Tz = −1/2〉 given by Eq. (3.63). In this state the
amplitude of the π0n part is

√
2 times that of the π−p part. Therefore, at the ∆-peak,

the charge exchange (π−p → π0n) reaction cross section is twice as large as the elastic
(π−p → π−p) cross section, and the total π−p cross-section at ∆-peak is three times the
elastic as shown in Fig. 3.2.

This simple analysis of the relative strengths of π+p and π−p cross sections is possible
in the ∆-peak region because it is a strong and well isolated resonance. The higher energy
resonances in pion-nucleon scattering require a more careful treatment because they are
weaker and overlapping. Nevertheless it is obvious that those resonances that occur in π−p
scattering, but not in π+p, must have T = 1/2. The lowest of these has mass W = 1440
MeV, and is called the Roper resonance.

3.8 The πN∆ coupling

In the non-relativistic limit the pion-nucleon-∆ Hamiltonian, HπN∆, has the form

HπN∆ = −fπN∆

mπ

{
S ·∇

[
φ(r) ·T

]
+ S† ·

[
∇φ(r) ·T†

]}
. (3.66)

Its first term describes the conversion of a nucleon into ∆ by the absorption or emission of a
pion, while the second describes the reverse conversion of ∆ into nucleon. This interaction
is a direct generalization of the HπNN given by Eq. (3.10); the spin and isospin operators σ
and τ in HπNN are replaced by the transition spin and isospin operators S,S† and T,T†.
The operator S (T) converts a spin 1/2 (isospin 1/2) particle into a spin 3/2 (isospin 3/2)
particle. Thus the product ST changes a nucleon into a ∆, while S†T† does the reverse.
This interaction couples the ∆ resonance with Jπ = (3/2)+ to a π-N state having orbital
angular momentum l = 1. When angular momentum and parity are conserved, this is the
only possibility.

The transition spin S has been defined by Rarita and Schwinger so that it transforms
as an axial vector under rotations; then S · (∇φ · T) is a scalar in both configuration and
isospin spaces. The x, y and z components of S have matrix elements between the four spin
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3/2 states with projection m′ = −3/2,−1/2, 1/2, 3/2, and the two spin 1/2 m = −1/2, 1/2
states. The spin-transition operator is thus a set of three 4×2 matrices whose elements are
obtained as follows. It is convenient to define the basis:

ǫ̂±1 ≡ ∓ 1√
2
(x̂± iŷ) , ǫ̂0 ≡ ẑ , (3.67)

with ǫ̂∗q = (−)q ǫ̂−q and ∑

q=±1,0

(ǫ̂q)a (ǫ̂
∗
q)b = δa,b . (3.68)

The spin-transition operator can be expanded on this basis as

S =
∑

q=±1,0

ǫ̂q
(
ǫ̂∗q · S

)
=

∑

q=±1,0

(−)q ǫ̂q S−q , (3.69)

where Sq denotes its spherical components, Sq = ǫ̂q · S. Matrix elements of these between
the | 3/2, m′〉 and | 1/2, m〉 states, denoted simply as | m′〉 and | m〉, are obtained by making
use of the Wigner-Eckart theorem:

〈m′ |Sq | m〉 = 1

2
〈3/2 || S || 1/2〉 〈1, 1/2; 3/2, m′ | 1, q; 1/2, m〉 , (3.70)

where the Clebsch-Gordan coefficients combine the spin 1/2 of the nucleon and the orbital
angular momentum 1 of the absorbed or emitted pion to obtain the total spin 3/2 of the ∆
resonance. Choosing the norm of S such that the reduced matrix element

〈3/2 || S || 1/2〉 = 2 , (3.71)

leads, via Eqs. (3.69) and (3.70), to

〈m′|S|m〉 = 〈1, 1/2; 3/2, m′|1, m′ −m; 1/2, m〉 ǫ̂∗m′−m . (3.72)

The isospin-transition operator T has similar matrix elements between the four isospin
3/2 states ∆−,∆0,∆+,∆++ and the two isospin 1/2 states n, p. The operator S† is rep-
resented by 2×4 matrices, and thus products of S† and S are 2×2 matrices, which can be
represented using the Pauli matrices σ and the 2×2 unit matrix. The following identities,

S† · S = 2 , (3.73)

S† × S = −2 i

3
σ , (3.74)

S† ·A S ·B =
2

3
A ·B− i

3
σ · (A×B) , (3.75)

are generalizations of the well known identities for products of Pauli matrices, where as in
Eq. (3.31) the 2×2 unit matrix is not explicitly indicated. It is often possible to eliminate the
transition spin and isospin operators with these identities as illustrated in the next section.
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3.9 Pion-nucleon scattering in the ∆-resonance region

q−q’

q p=0

q

q’

Figure 3.7: The process dominating the pion-nucleon scattering in the region of the ∆ resonance.
The thick, thin and dashed lines respectively show ∆’s, nucleons and pions.

We will now calculate the amplitude for pion-nucleon scattering in the ∆-resonance region
where the process shown in Fig. 3.7 is expected to dominate. The initial state has a nucleon
at rest with spin-isospin projections χσητ , and a pion of momentum q and charge (i.e.,
isospin projection) α. We denote it by:

|i〉 = |χσητ ;q, α〉 , (3.76)

and similarly the final state by

|f〉 = |q− q′, χ′
ση

′
τ ;q

′, α′〉 , (3.77)

where q− q′ is the momentum of the recoiling nucleon.
The spin-isospin projections of the intermediate ∆ state are denoted by σ∆τ∆. Since the

∆ is not observed, we must sum over σ∆τ∆. For simplicity, we will neglect the recoil motion
of the nucleon (i.e., q = q′), since it has rather small effects due to the large difference
between the nucleon and pion masses (mN ≃ 7mπ). The second-order scattering amplitude
reads

A
(2)
fi =

∑

σ∆ τ∆

〈f |HπN∆|χσ∆
ησ∆

〉 〈χσ∆
ησ∆

|HπN∆|i〉
ωq −∆m

, (3.78)

where ωq is the pion eneergy, and ∆m is simply given by the difference between the nucleon
and ∆ masses, again neglecting the kinetic energy of the recoiling ∆. Carrying out the sum
over the spin-isospin projections leads to

A
(2)
fi =

〈f |HπN∆ HπN∆|i〉
ωq −∆m

= −f
2
πN∆

m2
π

Mσ Mτ

2ωq(ωq −∆m)
, (3.79)



38 CHAPTER 3. PION-EXCHANGE INTERACTIONS

where the factorsMσ andMτ give the dependence of the amplitude on the spins and isospins
of the interacting nucleons.

Since π-N scattering is due to the strong interaction, many higher order processes ne-
glected here are likely to contribute. Therefore the parameters fπN∆ and ∆m entering the
expression above for the second order amplitude are called effective parameters. They are
determined from the observed energy and width of the ∆ resonance, and their values contain
the effect of the higher order terms not explicitly included here.

We first consider the mass difference ∆m. The ∆-particle has a short life-time, and
therefore a large uncertainty in its energy, as reflected by the width of this resonance. It
implies that the mass m∆ of the ∆-particle is complex:

m∆ = E∆ − iΓ∆/2 . (3.80)

The time dependent wave function of a ∆ at rest is given by

ψ∆(t) = e−i M∆t χσ∆
ητ∆ = e−i E∆t e−Γ∆t/2 χσ∆

ητ∆ . (3.81)

The probability of finding the ∆ in spin-isospin state χσ∆
ητ∆ decreases as e−Γ∆t, describing

the decay of the ∆ with a life-time of 1/Γ∆. The values E∆ = 1232 and Γ∆ = 115 MeV are
obtained from the observed position and width of the ∆-resonance, and hence

∆m ≃ (293− i 58) MeV . (3.82)

The dependence of the amplitude on the nucleon spins is contained in the matrix element
Mσ,

Mσ = 〈χ′
σ|S† · q′ S · q|χσ〉,

= 〈χ′
σ|
[
2

3
q′ · q− i

3
σ · (q′ × q)

]
|χσ〉, (3.83)

using the identity (3.75). The isospin factorMτ in the scattering amplitude takes into account
the contribution of the isospin terms originating from the isoscalar φ ·T in HπN∆, Eq. (3.66).
The absorption of π+,0,− with α = 1, 0,−1 respectively produces a factor Tα = T · êα in the
matrix element 〈χσ∆

ησ∆
|HπN∆|i〉. Here the unit vectors êα are defined as

ê±1 =
1√
2
(x̂± i ŷ) , ê0 = ẑ , (3.84)

and differ from the ǫ̂α defined in Eq. (3.67) by a phase factor. In a similar way, the pion
emission matrix element contains a factor T† · ê∗α′ , so that

Mτ = 〈η′τ |T† · ê∗α′ T · êα|ητ 〉,

= 〈η′τ |
[
2

3
ê∗α′ · êα − i

3
τ · (ê∗α′ × êα)

]
|ητ 〉 . (3.85)
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As in Sec. 2.3, the scattering cross section is obtained from

dσ

dΩ
= 2π |Afi|2

density of final states

incident flux
. (3.86)

The incident flux equals the velocity of the relativistic pions given by q/ωq, and the density of
final pion states, per unit solid angle, is ω′

qq
′/(2π)3. Using these factors and the second-order

A
(2)
fi , we get:

dσ

dΩ
=

1

(4π)2
f 4
πN∆

m4
π

q′

q

|MσMτ |2
(E∆ − E)2 + Γ2

∆/4
, (3.87)

where E = mN + ωq is the total energy including mN , the rest mass of the target nucleon.
This cross section obviously peaks at E=E∆, and the full width of the peak at half maximum
value is Γ.

In the last section we showed that the elastic π+p cross section in the ∆-resonance region
is nine times the elastic π−p, by adding the isospins of the pion and nucleon to obtain that
of the ∆. This relation between the cross sections can also be obtained from the above
equation by considering the isospin factor Mτ . It can be easily verified that Mτ equals
1 for π+p → π+p while it is 1/3 for π−p → π−p. The transition isospin (spin) operator
automatically adds the pion and nucleon isospins (angular momenta) to obtain the isospin
(spin) of the ∆.

3.10 Pion coupling constants

The value of the effective coupling constant fπN∆ can be easily determined from the decay
rate Γ∆ of ∆-particles. This decay rate does not depend upon the spin or isospin of the ∆.
For simplicity we study that of ∆++ in the spin projection state σ∆ = 3/2. Only π+-proton
final states can occur in this decay, and the proton spin projection can only be +1/2 because
the P-wave pion carries a unit angular momentum. Thus the amplitude for emission of a
pion with momentum q, in the notation of the previous section, is given by

A∆(q) = 〈χ1/2 η1/2;q,+|HπN∆|χ3/2 η3/2〉,

= i
fπN∆

mπ

MσMτ√
2ωq

, (3.88)

where here the spin and isospin factors are

Mσ = 〈χ1/2|S† · q|χ3/2〉 = ǫ̂+1 · q , (3.89)

Mτ = 〈η1/2|T† · ê∗+1|η3/2〉 = 1 . (3.90)

The differential decay rate for emission of a pion with momentum q in a solid angle dΩq

follows from
dΓ∆(q) = 2π |A∆(q)|2 (density of final states) . (3.91)
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Here we will use the correct density of final states taking into account the recoil energy of
the nucleon. The emitted pion and the recoiling nucleon have equal and opposite momenta
for the decay of a ∆ at rest. The magnitude q of their momenta is determined from energy
conservation,

E∆ = ωq + EN , EN =
√
m2

N + q2 , (3.92)

from which q = 227 MeV for E∆ = 1232 MeV. The density of final states is also calculated
from the above equations, i.e.

density of final states =
1

(2π)3

(
dE∆

dq

)−1

q2 dΩq =
1

(2π)3
EN

E∆

q ωq dΩq , (3.93)

and the differential rate reads (see Eqs. (3.88)–(3.93))

dΓ∆(q) =
1

(4π)2
f 2
πN∆

m2
π

q (q2x + q2y)
EN

E∆
dΩq . (3.94)

The total rate Γ∆ of the ∆ is obtained by integrating over dΩq. Using

∫
dΩqq

2
a =

4π

3
q2 , (3.95)

for a = x, y, z, it follows that

Γ∆ =
2

3

f 2
πN∆

4π

q3

m2
π

EN

E∆
. (3.96)

Inserting the observed values in the above equation gives

f 2
πN∆

4π
= 0.36 . (3.97)

The value of the pion-nucleon coupling constant fπNN , obtained from fits to the nucleon-
nucleon scattering data, is

f 2
πNN

4π
= 0.075 . (3.98)

3.11 One pion-exchange transition potentials

The one-pion-exchange NN → ∆∆ and NN → N∆ reactions are shown in Fig. 3.8. These
processes occur at center of mass energies above ≃ 300 MeV, roughly the difference between
the energy of the ∆ peak and the nucleon mass. At such energies pions are produced in
NN collisions, and the description of scattering in terms of NN potentials breaks down.
At lower energies, below the pion production threshold, the initial and final states do not
contain pions, and the role of virtual pions is absorbed into the potentials.
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Figure 3.8: The NN → ∆∆ and NN → ∆N pion-exchange reactions which make up the one-
pion-exchange transition potentials. The thick, thin, dashed, and wavy lines respectively show ∆’s,
nucleons, pions, and transition potentials.

In this section we describe the NN → ∆∆ and NN → ∆N reactions with one-pion-
exchange transition potentials (OPETP), which contain only the nucleon and ∆ degrees
of freedom by eliminating the exchanged virtual pion in Fig. 3.8. Our objective is to use
these potentials at energies below the pion production threshold to remove the ∆ degrees of
freedom from the nuclear Hamiltonian as discussed in the next section. At low energies the
∆ particles are virtual, and they cannot decay into real pions and nucleons. The imaginary
part of m∆ in Eq. (3.80), representing this decay, is therefore ignored in this section.

Energy conservation in the center of mass frame implies that

p2

2mN
=

p′2

2m∆
+m∆ −mN , (3.99)

in the NN → ∆∆ processes in Fig. 3.8. The transition amplitude is calculated using
Eq. (3.12) with HπN∆ in place of HπNN . The denominator EI − E equals the energy ωq of
the exchanged pion in both the processes (a) and (b) in Fig. 3.8, and the total amplitude is

ANN→∆∆(q) = − f 2
πN∆

m2
π

1

ω2
q

〈χ′
1∆, χ

′
2∆|S1 · q S2 · q T1 ·T2|χ1, χ2〉 , (3.100)

where χ′
1∆, χ

′
2∆ are the spin-isospin states of the ∆’s in the final state, and χ1, χ2 are those

of the initial nucleons. The OPETP ṽ π
NN→∆∆ in momentum space is therefore:

ṽ π
NN→∆∆(q) = −f

2
πN∆

m2
π

T1 ·T2
S1 · q S2 · q
q2 +m2

π

, (3.101)
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from which, making use of the methods described in Sec. 3.2, its configuration-space version
easily follows as

vπNN→∆∆(r) =
f 2
πN∆

4π

mπ

3
T1 ·T2

{
Tπ(r)S

III
12 +

[
Yπ(r)−

4π

m3
π

δ(r)
]
S1 · S2

}
, (3.102)

where the NN → ∆∆ transition tensor potential SIII
12 is defined as

SIII
12 = 3S1 · r̂ S2 · r̂− S1 · S2 . (3.103)

It contains transition spin operators in place of the Pauli spin operators in the usual ten-
sor operator, Eq. (3.27). The form of this transition potential is very similar to that of
vπ12(r) given by Eq. (3.26). The NN → NN and NN → ∆∆ one-pion-exchange scattering
amplitudes are reproduced by the Born amplitudes of ṽ π and ṽ π

NN→∆∆, respectively.
In the NN → ∆N processes (d) and (e) shown in Fig. 3.8, energy conservation implies

p2

mN
=
p ′ 2(m∆ +mN )

2m∆mN
+m∆ −mN , (3.104)

and the corresponding transition amplitudes are calculated again using Eq. (3.12) with one
of the HπNN replaced by HπN∆. The energy denominators in the two processes are

EI − E = ωq ± e , (3.105)

where e is the energy transfered by the pion from nucleon 2 to 1,

e = m∆ −mN +
p′2

2m∆

− p2

2mN

. (3.106)

The sum of the transition amplitudes (d) and (e) is

ANN→∆N(q,p) = − fπN∆fπNN

m2
π

1

ω2
q − e2

〈χ′
1∆, χ

′
2|S1 · q σ2 · q T1 · τ 2|χ1, χ2〉 . (3.107)

The factor (ω2
q − e2)−1 in this amplitude is the Feynman propagator for pions of momentum

q and energy ±e. The NN → ∆N transition potential obtained from it is nonlocal due to
the dependence of the amplitude on e. In the center of mass frame, the exchanged pion does
not transfer energy in NN → NN and NN → ∆∆ processes. Therefore in those cases the
OPEP is local.

At low energies near the threshold of ∆ production, p′ ≃ 0, q ≃ p and p2 ≃ mN (m∆−mN )
from Eq. (3.104), and from these relations it follows that

ω2
q ≃ m2

π +mN (m∆ −mN ) ≫ e2 ≃ 1

4
(m∆ −mN )

2 . (3.108)
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Therefore we may neglect the e2 factor in the above amplitude. This gives an approximate
local NN → ∆N transition potential similar in form to the OPEP and the NN → ∆∆
OPETP, in momentum space

ṽπNN→∆N(q) ≃ − fπN∆fπNN

m2
π

T1 · τ 2
S1 · q σ2 · q
q2 +m2

π

, (3.109)

and in configuration space

vπNN→∆N(r) ≃
fπN∆fπNN

4π

mπ

3
T1 · τ 2

[
Tπ(r)S

II
12 +

[
Yπ(r)−

4π

m3
π

δ(r)
]
S1 · σ2

]
, (3.110)

where the NN → ∆N transition tensor operator SII
12 is defined as

SII
12 = 3S1 · r̂ σ2 · r̂− S1 · σ2 . (3.111)

The NN → N∆ transition potentials are obtained by interchanging the particle indices
1 and 2 in the above expressions. The potentials vπ∆N→NN and vπ∆∆→NN converting the
∆N and ∆∆ states back into NN states are the adjoints of the vπNN→∆N and vπNN→∆∆,
respectively. They are easily obtained by replacing the operators S and T in the potentials
given in Eqs. (3.110) and (3.102) by S† and T†.

3.12 Two pion-exchange two-nucleon potential

There is an infinite number of two-pion-exchange processes that can contribute to the scat-
tering of two nucleons below the pion production threshold energy. These include the twelve
processes obtained by replacing the scalar mesons in the diagrams of Fig. 2.2 by pions, and
contain four πNN couplings. An additional 36 processes are obtained by replacing either or
both the nucleons in the intermediate states by ∆’s. They contain either two πN∆ and two
πNN or four πN∆ couplings. In addition we can have infinitely many processes in which
higher energy nucleon resonances replace the ∆’s or nucleons in the intermediate states. In
view of the large number of processes that can contribute to it, a complete calculation of the
two-pion-exchange potential between nucleons is difficult even in the limit in which nucleons
are treated non-relativistically. Our objective here is to study the spin-isospin dependence
and the radial shape of the two-pion-exchange interaction, and determine its strengths later
by fitting the observed NN scattering data. This way we obtain semi-phenomenological
models of nuclear forces.

We expect that the pion-exchange processes with nucleon intermediate states are approx-
imately represented by the second order contributions of the OPEP. However, the processes
with ∆-resonances in the intermediate states, are not included in second order OPEP. Their
contribution is approximated by the second order OPETP processes illustrated in Fig. 3.9.
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Figure 3.9: The two-pion-exchange two-nucleon interaction via ∆N , N∆ and ∆∆ intermediate
states. See caption of Fig. 3.8 for notation.

As mentioned in Sec. 3.5, there is similarity between the strong tensor part of the OPEP
and the one-photon exchange interaction between two magnetic dipoles. It is well known
that the magnetic field of one of the dipoles can induce a magnetic moment on the other
when the interacting bodies are polarizable. The interactions involving the induced moments
are described as two-photon exchange potentials. The van der Waals potential between two
neutral atoms, due to electrostatic interaction between the induced electric dipole moments
of the atoms, is also an example of the two-photon exchange interaction. One can regard
the two-pion-exchange interactions shown in Fig. 3.9 in a similar fashion. The pion field of
one nucleon polarizes the spins of the quarks in the other nucleon leading to the interaction
depicted in diagrams (a) and (b) of Fig. 3.9, while that in diagram (c) is between the two
induced polarizations.

The contribution of the 48 two-pion-exchange processes with NN , N∆, ∆N and ∆∆
intermediate states have been calculated explicitly. This calculation is more difficult than
that for the simple scalar meson exchange discussed in Sec. 2.5 because the pion-nucleon spin
couplings σi · q1 and σi · q2 do not commute. The isospin, transition-spin and transition-
isospin couplings also do not commute. However, taking all the effects together, we find that
the sum of the 48 diagrams is well approximated by the sum of the second order contribution
of OPEP and OPETP.

The total amplitude due processes (a)-(c) is:

A
(2)
OPETP = 2

∑

I1

〈f |vπ∆N→NN |I1〉
1

E − EI1

〈I1|vπNN→∆N |i〉

+
∑

I2

〈f |vπ∆∆→NN |I2〉
1

E − EI2

〈I2|vπNN→∆∆|i〉, (3.112)

where |I1〉 and |I2〉 are ∆N and ∆∆ intermediate states in diagrams (a) and (c), and the
first term is doubled to include the contribution of diagram (b) having N∆ states.
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The energy denominators are:

E −EI1 =
p2

mN
− (m∆ −mN)−

(m∆ +mN )

2m∆mN
(p− q1)

2 , (3.113)

E −EI2 =
p2

mN
− 2(m∆ −mN)−

(p− q1)
2

m∆
, (3.114)

where ±p and ±(p − q1) are the momenta of the particles in the initial and intermediate
state, respectively. Simple estimates are obtained by neglecting the kinetic energies in these
denominators so that they become constants equal to −(m∆ −mN ) and −2(m∆ −mN ). We
can then use closure to sum over the intermediate states |I1〉 and |I2〉 to obtain:

A
(2)
OPETP ≃ 2

(mN −m∆)
〈f |vπ∆N→NNv

π
NN→∆N |i〉

+
1

2(mN −m∆)
〈f |vπ∆∆→NNv

π
NN→∆∆|i〉 . (3.115)

The two-pion-exchange potential v2π∆ is defined so that

〈f |v2π∆ |i〉 = A
(2)
OPETP . (3.116)

It reproduces approximately the two-pion-exchange two-nucleon scattering amplitude via
intermediate states with one or two ∆-resonances. Comparing the above two equations
gives:

v2π∆ (r) ≃ 2 [vπNN→∆N(r)]
† vπNN→∆N(r)

mN −m∆
+

[vπNN→∆∆(r)]
† vπNN→∆∆(r)

2 (mN −m∆)
. (3.117)

In the OPETP given by Eqs. (3.110) and (3.102) the tensor terms are dominant because the
function Tπ(r) ≫ Yπ(r) in the region of interest. Keeping only these terms in the OPETP
leads to

v2π∆ (r) =
2

9

f 2
πNNf

2
πN∆

(4π)2
m2

π

(mN −m∆)
T 2
π (r)T

†
1 · τ 2 T1 · τ 2

(
SII
12

)†
SII
12

+
1

18

f 4
πN∆

(4π)2
m2

π

(mN −m∆)
T 2
π (r)T

†
1 ·T†

2T1 ·T2

(
SIII
12

)†
SIII
12 . (3.118)

Using the identities listed in Eqs. (3.73)–(3.75) gives

T†
1 · τ 2 T1 · τ 2 = 2 +

2

3
τ 1 · τ 2 , (3.119)

T†
1 ·T†

2 T1 ·T2 =
4

3
− 2

9
τ 1 · τ 2 , (3.120)

(
SII
12

)†
SII
12 = 4− 2

3
σ1 · σ2 +

2

3
S12 , (3.121)

(
SIII
12

)†
SIII
12 =

10

3
+

2

9
σ1 · σ2 −

2

9
S12 , (3.122)
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which, together with the values of the coupling constants given in Sec. 3.10, provide us with
an estimate of v2π∆ . It can be conveniently expressed as

v2π∆ (r) =
6∑

p=1

Ip∆ T
2
π (r)O

p
12 , (3.123)

where the six two-body operators Op
12 are defined as

Op=1,...,6
12 = 1, τ 1 · τ 2 , σ1 · σ2 , σ1 · σ2 τ 1 · τ 2 , S12 , S12τ 1 · τ 2 . (3.124)

The above six operators are also denoted by Oc, Oτ , Oσ, Oστ , Ot and Otτ for convenience. The
superscript c stands for the central term without spin-isospin dependence, while superscripts
τ, σ and t are for τ 1 ·τ 2, σ1 ·σ2 and tensor terms. Superscripts στ and tτ denote terms that
depend on spin as well as isospin.

In the Urbana-Argonne models of the two-nucleon interaction the strengths Ip of the
interaction with T 2

π (r) radial dependence are obtained by fitting the NN scattering data.
Excellent fits to the observed scattering data can be obtained with these models which
contain the OPEP, the Ip T 2

π (r)O
P
ij terms and a phenomenological short-range core.

Values obtained for the strengths Ip=1,...,6
∆ of the v2π∆ from Eqs. (3.118)–(3.122) are listed

in Table 3.1. This table also reports the strengths Ip=1,...,6 of the v2π in the Argonne v18
(AV18) model of the two-nucleon interaction. Some of the differences between the values of
Ip∆, which take into account only the intermediate states with one or two ∆-resonances, and
the Ip determined from experimental data are because the latter includes the contributions
of all intermediate states with any resonances. However, a part of the difference is due to
the contribution of heavier meson-exchange exchanges. These are not considered explicitly
in the AV18, and hence its phenomenological v2π part contains their contribution also.

Table 3.1: The strengths of v2π∆ and v2π in the Argonne v18 interaction in MeV.

v2π∆ v2πAV 18 v2π∆ v2πAV 18 v2π∆ v2πAV 18

Ic −5.20 −8.11 Iσ +0.38 +0.24 I t −0.38 +1.18
Iτ −0.69 −0.37 Iστ +0.20 +0.62 I tτ −0.20 −0.10

The v2π∆ accounts for only about 60% of the central potential strength Ic in the phe-
nomenological v2π. Much of the remaining 40% could come from the attraction due the
exchange of a scalar, T = 0 meson, which has a large width of 600 to 1000 MeV, and a mass
ranging from ≃ 400 to 1200 MeV. In the 2002 compilation of the properties of mesons by the
Particle Data Group this meson is denoted by f0(600) and σ, and it is often considered as a
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resonance between two pions which enhances the central component of the two-pion-exchange
potential.

The I t in the Argonne v18 is positive, while that in v2π∆ is small and negative. This
difference is likely to be due to the neglect of the one-η-meson exchange in the Argonne
model. The η-meson is pseudoscalar, like the pion, but it has a larger mass (mη = 547
MeV), and zero isospin. It thus gives rise to a tensor force like the OPEP, but without the
τ 1 · τ 2 isospin dependence, and of shorter range. Most of the I tT 2

π (r) S12 potential in the
AV18 presumably approximates the one-η-meson exchange potential.

Table 3.1 shows that the v2π is dominated by an attractive central force, since the Ic

is large and negative, while all the other Ip are much smaller in magnitude. However, this
is only partly true. The total isospin and spin of two nucleons is denoted by T and S,
respectively. Both T and S can have values 0 or 1, giving four two-nucleon isospin-spin
states with TS = 00, 01, 10 and 11. Strong interactions conserve T and S, and therefore
nuclear forces can also be specified according to TS channels. Interactions in TS states are
related to the interaction operator

v12 =
6∑

p=1

vp(r) Op
12, (3.125)

via the following relations:

vTS = vcTS(r) + δS,1 v
t
T (r)S12 , (3.126)

vcTS = vc + (4T − 3)vτ + (4S − 3)vσ + (4S − 3)(4T − 3)vστ , (3.127)

vtT = vt + (4T − 3)vtτ . (3.128)

The factors (4S − 3) and (4T − 3) are the eigenvalues of the σ1 · σ2 and τ 1 · τ 2 operators
in states with S or T = 0, 1, and there is no tensor interaction in S = 0 channels according
to Eq. (3.39). The seemingly small values of the strengths Ip=2,3,4 produce a significant
channel dependence in the v2π∆ . The values of IcTS obtained from the Ip for v2π∆ listed in
Table 3.1 are −2.47,−3.35,−7.63 and −5.31 MeV for TS =00, 01, 10 and 11, respectively;
the corresponding values obtained from the Ip for the AV18 model are −2.10,−8.63,−11.07
and −7.63 MeV. The qualitative agreement between the vcTS obtained from v2π∆ and the
phenomenological v2πAV 18 obtained from the NN scattering data suggests that the former
contributes a major part of the two-pion-exchange potential.

In our calculation of the v2π∆ , as well as in the AV18, only terms with the radial shape
given by T 2

π (r) are included. There are also additional terms with radial shapes Tπ(r) Yπ(r)
and Y 2

π (r). At r < 1.4 fm, where the v2π becomes important, Tπ(r)/Yπ(r) > 7, thus these
terms are expected to be smaller. However, more refined models of v2π∆ should take them
into account. The δ(r)-function parts of the OPETP in Eqs. (3.102) and (3.110) are omitted
from the calculation of v2π∆ since the short range part of the interaction between two nucleons
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has many other contributions. In semi-phenomenological models it is entirely obtained from
fits to two-nucleon scattering data.

The last two decades have witnessed the emergence of chiral effective field theory (χEFT).
In χEFT, the symmetries of quantum chromodynamics, in particular its (approximate) chiral
symmetry, are used to systematically constrain classes of Lagrangians describing, at low
energies, the strong interactions of baryons (nucleons and ∆ isobars) with pions (as well as
the interactions of these hadrons with electroweak fields). This theory has led to a more
fundamental derivation of the two-pion-exchange component of the two-nucleon potential,
but will not be discussed in these notes.

3.13 Two pion-exchange three-nucleon P-wave inter-

action

p p p p p p

(c)

p pp

p’ p’ p’ p’ p’ p’ p’ p’ p’

i

i i i

ii

j

j j

jj

jk

k k
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q q
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1
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12

2

(a) (b)

Figure 3.10: The processes (a) and (b) contribute to the two-pion-exchange three-nucleon inter-
action. The process (c) shows a second order OPEP contribution. See caption of Fig. 3.8 for
notation.

The OPETP generate three-nucleon interactions as shown in Fig. 3.10. These were
considered by Fujita and Miyazawa (FM) in 1957. They are similar in nature to the three-
body force between three magnetic dipoles due to an induced moment on one of them. An
other interesting example is the gravitational interaction between the earth, moon and a
satellite. In addition to the sum of the three two-body (moon-earth, earth-satellite and
satellite-moon) gravitational potentials, it is necessary to consider a three-body potential
which depends upon the positions of all the three bodies. It takes into account the change
in the gravitational field of the earth due to the polarization of ocean waters via the tides
caused by moon’s gravity. The three-nucleon potential, denoted by Vijk, is much smaller
than the sum vij + vjk + vki of pairwise interactions. However, there is a large cancellation
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between the positive kinetic energy and the negative pairwise interaction energy of nuclei.
Therefore the three-nucleon potentials can give important contributions to nuclear binding,
a well known fact by now.

The potential generated by the processes like (a) and (b) in Fig. 3.10 is denoted by
V 2π
ijk(FM). It is a part of the two-pion-exchange three-nucleon P-wave interaction, denoted

by V 2π,PW , due to the scattering of the pion being exchanged between nucleons i and k by
a third nucleon j in the π-N P-wave. The smaller V 2π,SW due to π-N scattering in relative
S-wave is considered in the next section. In the process (c) of Fig. 3.10 the pion is absorbed
without excitation by nucleon j and re-emitted. This process is approximately equivalent
to vπij and v

π
jk acting in succession. To the extent that this is a good approximation, process

(c) does not generate a three-nucleon potential.
Figure 3.10 shows only those processes in which nucleon j is excited to the ∆ state; other

four processes in which nucleons i or k are excited are obtained by cyclic permutation of
particle indices i, j, k → j, k, i → k, i, j. The FM interaction represents the sum of these
three cyclic permutations. It is given by

〈f |V 2π
ijk(FM)|i〉 =

∑

cyc

∑

I

[
〈f |vπ∆N→NN(jk)|I〉

1

E −EI
〈I|vπNN→N∆(ij)|i〉

+〈f |vπ∆N→NN(ji)|I〉
1

E − EI
〈I|vπNN→N∆(kj)|i〉

]
. (3.129)

A simple approximation to V 2π
ijk(FM) is obtained by neglecting the kinetic energies of the

particles in the energy denominator E − EI . Without them the denominator is a constant,
mN −m∆, and we can use closure to sum over the intermediate states. This leads to

V 2π
ijk(FM) =

∑

cyc

1

mN −m∆

[
vπ∆N→NN(jk)v

π
NN→N∆(ij) + vπ∆N→NN(ji)v

π
NN→N∆(kj)

]
. (3.130)

It is convenient to define the following spin-space operators to evaluate the above V 2π
ijk(FM):

Xij = Tπ(rij)Sij + Yπ(rij)σi · σj , (3.131)

XII
ij = Tπ(rij)S

II
ij + Yπ(rij)Si · σj , (3.132)

where Xij gives the spin-space dependence of the OPEP and XII
ij that of OPETP. The δ(r)-

function term has been dropped from these operators for reasons mentioned earlier. We
obtain:

V 2π
ijk(FM) = −1

9

f 2
πN∆f

2
πNN

(4π)2
m2

π

m∆ −mN

∑

cyc

(
XII†

jk T†
j · τ kX

II
ji Tj · τ i

+XII†
ji T†

j · τ iX
II
jk Tj · τ k

)
, (3.133)
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which can be expressed also as

V 2π
ijk(FM) = − 1

18

f 2
πN∆f

2
πNN

(4π)2
m2

π

m∆ −mN

∑

cyc

[ (
XII†

jk XII
ji + h.c.

) (
T†

j · τ k Tj · τ i + h.c.
)

+
(
XII†

jk XII
ji − h.c.

) (
T†

j · τ k Tj · τ i − h.c.
) ]

. (3.134)

The transition-spin and -isospin operators can be eliminated from from the V 2π
ijk(FM) using

the identities:

XII†
jk XII

ji + h.c. =
2

3

{
Xjk , Xji

}
, (3.135)

XII†
jk XII

ji − h.c. = −1

3

[
Xjk , Xji

]
, (3.136)

T†
j · τ k Tj · τ i + h.c. =

2

3

{
τ k · τ i , τ i · τ k

}
, (3.137)

T†
j · τ k Tj · τ i − h.c. = −1

3

[
τ j · τ k , τ j · τ i

]
, (3.138)

derived from Eq. (3.75). This gives the FM potential in the convenient form:

V 2π
ijk(FM) =

∑

cyc

[
AFM

2π

{
Xij , Xjk

}{
τ i ·τ j , τ j ·τ k

}
+CFM

2π

[
Xij , Xjk

][
τ i·τ j , τ j ·τ k

]]
, (3.139)

with

AFM
2π = − 2

81

f 2
πN∆f

2
πNN

(4π)2
m2

π

m∆ −mN
, (3.140)

and

CFM
2π =

1

4
AFM

2π . (3.141)

Equation (3.140) gives an estimate of AFM
2π = −0.044 MeV for the strength of the anticom-

mutator part of the FM potential.
The above V 2π

jk (FM) is a part of the V 2π,PW due to the excitation of nucleon j to the
∆ resonance. However, many other π-N P-wave resonances can contribute to the V 2π,PW .
We will now show that the total V 2π,PW retains the form of V 2π

ijk(FM); additional resonances
only change the strengths A2π and C2π.

Conservation of angular momentum and isospin implies that the resonance R excited by
the capture of a P-wave pion can only have spin JR = 1/2 or 3/2, and isospin IR = 1/2 or
3/2. The contribution of the resonance R to the V 2π,PW can be calculated as in the last
section assuming that the πNR coupling has the form

HπNR = −fπNR

mπ

[
SR ·

[
∇φ(r) ·TR

]
+ S†

R ·
[
∇φ(r) ·T†

R

]]
, (3.142)
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which is the direct generalization of Eqs. (3.10) and (3.66). The operator SR = σ, S when
JR = 1/2, 3/2. Similarly TR = τ , T when IR = 1/2, 3/2. The interaction generated by a
P-wave resonance R has the general form of the FM interaction of Eq. (3.139), i.e.

V 2π
ijk(R) =

∑

cyc

[
AR

2π

{
Xij , Xjk

}{
τ i · τ j , τ j · τ k

}
+CR

2π

[
Xij , Xjk

][
τ i · τ j , τ j · τ k

]]
, (3.143)

with

AR
2π = − 1

18

f 2
πN∆f

2
πNN

(4π)2
m2

π

m∆ −mN

(
7

6
− JR

3

)(
7

6
− IR

3

)
, (3.144)

and

CR
2π = − 1

18

f 2
πN∆f

2
πNN

(4π)2
m2

π

m∆ −mN

(
5

3
− 4 JR

3

)(
5

3
− 4 IR

3

)
. (3.145)

The factors (7/6 − J/3) and (5/3 − 4 J/3) have values 1 each for J = 1/2, and they are
respectively 2/3 and −1/3 for J = 3/2. These factors take into account those in Eqs. (3.135)–
(3.138).

The complete V 2π,PW is just the sum of all the V 2π
ijk(PW-R), including the R=∆ of the

FM interaction. It obviously has the form

V 2π,PW =
∑

cyc

[
APW

2π

{
Xij , Xjk

}{
τ i ·τ j , τ j ·τ k

}
+CPW

2π

[
Xij , Xjk

][
τ i ·τ j , τ j ·τ k

]]
, (3.146)

where the strengths APW
2π and CPW

2π are the sums of all P-wave AR
2π and CR

2π, respectively.
These strengths have to be determined from experiment. To the extent that the ∆ and other
JR = IR = 3/2 resonances dominate V 2π,PW we may expect APW

2π ≃ 4CPW
2π .

3.13.1 The FM interaction in time-ordered perturbation theory

In this subsection we will recalculate the FM interaction of Eqs. (3.139)–(3.141) using time-
ordered perturbation theory instead of the OPETP. When the nucleon and ∆ kinetic energies
are neglected, we recover the result of the last section justifying the use of OPETP to
calculate three-nucleon interactions mediated by N -∆ excitations.

In time-ordered perturbation theory there are 24 diagrams that contribute to the FM
interaction. They can be divided into two groups of 12 diagrams, F.1 to F.12 and M.1 to
M.12. The diagrams F.1 to F.12 are shown in Fig. 3.11. In these diagrams the pion with
momentum q1 and isospin α—here α specifies the cartesian component of the isospin-one
pion field with α = x, y or z rather than its charge state, as in Eq. (3.84)—is either emitted
or absorbed by nucleon i. This pion excites the nucleon j to the ∆ state. The second pion,
q2, β with β = x, y or z de-excites the ∆, and is absorbed or emitted by nucleon k. Let t1
and t′1 denote the time when pion “1” interacts with nucleons i and j respectively, while t2
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Figure 3.11: The time-ordered diagrams F.I which contribute to the Fujita-Miyazawa interaction.
The pion “1” carries a momentum q1 from nucleon i to j, while “2” carries q2 from j to k. The
positions of the three energy denominators are marked by a, b and c. See caption of Fig. 3.8 for
notation.

and t′2 denote the times when pion “2” interacts with nucleons k and j. The 24 diagrams
that contribute to the FM interaction are those in which the times t1, t

′
1, t2 and t′2 occur

in all possible orders. The 12 F.I diagrams shown in Fig. 3.7 have t′2 > t′1, while the M.I
diagrams have t′1 > t′2.

The contributions of diagrams F.1 to F.12 to the three-nucleon scattering amplitude are
given by

A3N =
∑

α,β

f 2
πNN

m2
π

f 2
πN∆

m2
π

1

4ω1ω2

[
12∑

I=1

1

productD(F.I)

]
〈χ′

k|σk · q2 τk,β|χk〉

× 〈χ′
j |S†

j · q2 Sj · q1T
†
j,β Tj,α|χj〉〈χ′

i|σi · q1 τi,α|χi〉 , (3.147)

Here χi,j,k and χ
′
i,j,k denote the initial and final spin-isospin states of nucleons i, j and k, and

productD(F.I) is the product of the three energy denominators in diagram F.I. The values
of productD(F.I) can be read off the diagrams F.I in Fig. 3.11. They are listed in Table 3.2
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neglecting nucleon and ∆ kinetic energies and using m∆N ≡ m∆ −mN . From Table 3.2 we
can easily verify that

12∑

I=1

1

productD(F.I)
= − 4

ω1 ω2m∆N
. (3.148)

Substituting this in Eq. (3.147) and summing over α, β lead to

A3N = −f
2
πNN

m2
π

f 2
πN∆

m2
π

1

ω2
1 ω

2
2m∆N

〈χ′
k, χ

′
j, χ

′
i|σk ·q2 S

†
j ·q2 Sj ·q1 σi ·q1τ k ·T†

j Tj ·τ i|χk, χj, χi〉 ,
(3.149)

and this equation is identical to that corresponding to diagram (a) of Fig. 3.10 expressing
the FM interaction with OPETP. The contribution of all the time ordered diagrams M.I
equals that of the diagram (b) of Fig. 3.10, and the sum of F.I and M.I contributions gives
the same V 2π

ijk(FM) in Eq. (3.139) obtained earlier.

Table 3.2: The values of −1/[productD(F.I)]

I −1/[productD(F.I) I −1/[productD(F.I)
1 ω2m∆N ω1 2 (m∆N + ω2)m∆N ω1

3 (m∆N + ω2) (ω1 + ω2)ω1 4 ω2m∆N (m∆N + ω1)
5 (ω2 +m∆N)m∆N (ω1 +m∆N) 6 (ω2 +m∆N ) (ω1 + ω2)ω2

7 ω2 (ω1 + ω2) (ω1 +m∆N ) 8 (ω2 +m∆N ) (ω1 + ω2 +m∆N) (ω1 +m∆N)
9 (ω2 +m∆N) (ω1 + ω1 +m∆N )ω2 10 ω1 (ω1 + ω2) (ω1 +m∆N)
11 ω1 (ω1 + ω2 +m∆N) (ω1 +m∆N) 12 ω1 (ω1 + ω2 +m∆N )ω2

3.13.2 The FM interaction using π-N scattering data

The calculation of the V 2π
ijk(FM) described above uses the ∆ mass and πN∆ coupling constant

obtained from the π-N scattering data. It would be more desirable to use the π-N scattering
data directly in order to predict the V 2π

ijk(FM). Such attempts have been reviewed by Friar
in 1999. It is difficult to make a direct connection between the observed π-N scattering data
and V 2π

ijk(FM), because the former is for real pions, while the pions that generate the FM
interaction are virtual. In this subsection we illustrate this problem with a simple model.

The model assumes that π-N scattering is only due to πNN and πN∆ couplings, and
that these couplings are weak so that perturbation theory is applicable. The four diagrams
that contribute to the π-N scattering amplitude in this model are shown in Fig. 3.12. The
processes N.1 and N.2 have only nucleon intermediate states, and they do not contribute
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Figure 3.12: The four time-ordered diagrams which contribute to the scattering of low-energy
pions by nucleons. See caption of Fig. 3.8 for notation.

to the three-nucleon interaction. The contribution of diagrams ∆.1 and ∆.2 for absorption
(emission) of a pion of isospin êα (êβ) is given by

AπN(α, β) = −f
2
πN∆

m2
π

1

m∆N − ω1

〈χ′
j|S†

j · q2 Sj · q1 T
†
j,β Tj,α|χj〉

−f
2
πN∆

m2
π

1

m∆N + ω2
〈χ′

j |S†
j · q1 Sj · q2 T

†
j,α Tj,β|χj〉 . (3.150)

For the sake of simplicity we consider the amplitude above in the limit |q1| and |q2| → 0. In
this limit ω1 ≃ ω2 ≃ mπ, and the π-N amplitude becomes

AπN(α, β) = −8

9

f 2
πN∆

m2
π

m∆N

m2
∆N −m2

π

〈χ′
j|q1 · q2 êα · êβ −

1

4
σj · (q1 × q2) τ j · (êα × êβ) |χj〉

− i
4

9

f 2
πN∆

m2
π

mπ

m2
∆N −m2

π

〈χ′
j |σj · (q1 × q2) êα · êβ + q1 · q2 τ j · (êα × êβ) |χj〉 ,

(3.151)

where êα are unit vectors along α = x, y, or z in isospin space. The second term of the above
AπN(α, β) is odd under the exchange q1, êα ⇀↽ q2, êβ and therefore, after summing over all
the time orderings of pions “1” and “2” (see previous section), does not contribute to the
three-nucleon interaction. The first term of AπN (α, β) is denoted by the operator

OπN(j;α, β) = b q1 · q2 êα · êβ − d σj · (q1 × q2) τ j · (êα × êβ) , (3.152)

where in our model the constants b and d have the values

b = −8

9

f 2
πN∆

m2
π

m∆N

m2
∆N −m2

π

, (3.153)

d = −2

9

f 2
πN∆

m2
π

m∆N

m2
∆N −m2

π

. (3.154)
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Figure 3.13: Feynman diagram (a) shows the scattering of pion “1” by nucleon j due to S-wave
interaction represented by the black dot. The diagram (b) shows the three-nuclon interaction via
a similar scattering of the pion being exchanged by nucleons i and k.

The two-pion-exchange three-nucleon interaction obtained by approximating the scatter-
ing of the virtual pions by the OπN(j) is denoted by V 2π(FM; πN) with

V 2π(FM; πN) =
∑

α,β

f 2
πNN

m2
π

1

ω2
1 ω

2
2

σi · q1 τ i · êαOπN(j;α, β)σk · q2 τ k · êβ , (3.155)

where the factor 1/(ω2
1 ω

2
2) comes from the pion propagators, and the other factors describe

the coupling of the pions to the nucleons i and k. Comparing the V 2π(FM; πN) with the
exact V 2π(FM) we find that the former contains the factor 2m∆N/(m

2
∆N − m2

π) instead of
2/m∆N . Since m∆N ≃ 2mπ, the V

2π(FM; πN) is too strong by ≃ 33%. The difference comes
because the energy denominators in the π-N scattering amplitude (3.150) contain the real
pion energies.

Note that the difference between V 2π(FM; πN) and V 2π(FM) is of order m2
π/m

2
∆N and

will vanish in the so called chiral limit mπ → 0. However, in the context of the nuclear
many-body problem mπ is not small. The range of OPEP is smaller than the mean inter-
nucleon spacing in nuclei, and the energies required to excite nucleons are not much larger
than mπ. The pion mass, ≃ 138 MeV, is obviously very large compared to nuclear energy
scales of few MeV.

3.14 Two pion-exchange three-nucleon S-wave interac-

tion

The S-wave pion-nucleon interaction is believed to be weak and short ranged. It is generally
discussed in the framework of chiral perturbation theory. It cannot depend on nucleon spin
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since S-wave pions do not have any angular momentum. The scattering amplitude shown in
panel (a) of Fig. 3.13 can be parameterized as

ASW
πN = [ac δα,β + att êα·êβ + i attττ j · (êα × êβ)] , (3.156)

where the coefficients ac, att and attτ can depend upon the momentum of the pion, and
approach constant values at small momenta. Here we neglect the momentum dependence of
these coefficients. All the π-N S-wave interactions are represented by the “dot” in Fig. 3.13.
These include the direct and crossed pion scattering via S-wave resonances as well as boson
exchange interactions between pions and nucleons.

In the last subsection we argued that it is difficult to calculate the strength of the large
V 2π
ijk(PW) from the π-N scattering data, and that it is better to determine it from nuclear

data. This is mainly due to the fact that mπ is not much smaller than m∆ − mN . In
contrast, the V 2π,SW

ijk has been calculated approximately from the π-N scattering data for
the following two reasons. The first is that the nucleon resonances that can contribute to
π-N S-wave scattering must have spin-parity 1/2−. Their masses m∗

1/2− are in excess of 1500
MeV, and so

m2
π

(m∗
1/2− −mN )2

< 0.07 . (3.157)

Therefore the mπ → 0 limit is more accurate for the V 2π
ijk(SW).

The second reason is that V 2π
ijk(SW) is very weak, and has little effect on nuclear binding

energies. It is difficult to determine its strength from nuclear data.
The ASW

πN contributes to the three-nucleon scattering amplitude via the Feynman diagram
(b) shown in Fig. 3.13. It includes the sum of all time orderings. The contribution of the
first term is given by:

ASW
3N (ac) = 2

f 2
πNN

m2
π

ac
∑

α,β

σk · q2

m2
π + q22

τ k · êβ δβ,α êα · τ i
σi · q1

m2
π + q21

,

= 2
f 2
πNN

m2
π

ac τ k · τ i
σk · q2

m2
π + q22

σi · q1

m2
π + q21

. (3.158)

Let the pi,j,k denote the initial and p′
i,j,k the final momenta of the nucleons i, j and k.

The pion momenta are given by:

q1 = pi − p′
i , q2 = p′

k − pk , (3.159)

and
pj − p′

j = q2 − q1 . (3.160)

The three-nucleon potential due to the ac term in the S-wave amplitude is the Fourier
transform of A3N(ac):

V 2π
ijk(SW; ac) =

∑

cyc

∫ d3q1
(2π)3

d3q2
(2π)3

e−iq1·rije−iq2·rjk A3N (ac) . (3.161)
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We note that:

∫
d3q

(2π)3
σ · q e−iq·r

m2
π + q2

=
i

4π
mπ σ ·∇Yπ(r) = − i

4π
m2

π σ · r̂Z(r) , (3.162)

where the function Z(r) is defined as

Z(r) =
(
1 +

1

mπr

)
Yπ(r) , (3.163)

so that

V 2π
ijk(SW; ac) = −2

f 2
πNN

(4π)2
acm

2
π

∑

cyc

Z(rij)Z(rjk) τ i · τ k σi · r̂ij σk · r̂jk . (3.164)

The isospin dependence of the V 2π
ijk(SW; att) due to the att term in the ASW

πN , Eq. (3.156),
is the same as that of V 2π,SW (ac), since

∑

α,β

τ k · êβ êβ · êα êα · τ i = τ k · τ i , (3.165)

and therefore the sum of V 2π
ijk(SW; ac) + V 2π

ijk(SW; att) is obtained simply by replacing the ac
by ac + att in Eq. (3.164).

The contributions of the aτtt term contain equal and apposite parts with isospin factors
τ j ·(τ i × τ k) and τ j ·(τ k × τ i) which cancel out. Therefore the total V 2π,SW can be expressed
as

V 2π,SW = −f
2
πNN

(4π)2
a′m2

π

∑

cyc

Z(rij)Z(rjk) τ i · τ k σi · r̂ij σk · r̂jk . (3.166)

with a′ = 2(ac + att). Ideally the strength parameter a′ should be determined from three-
nucleon scattering data or nuclear binding energies. However, as mentioned earlier, this
interaction is very small compared with the V 2π,PW , and it is difficult to obtain its strength
from nuclear binding energies. The parameter a′ has been extracted from low-energy π-N
scattering data. Present estimates give

ASW
2π =

f 2
πNN

(4π)2
a′m2

π ≃ −1MeV . (3.167)

3.15 Three pion-exchange three-nucleon interaction

The various three-pion-exchange processes that can contribute to the three-nucleon interac-
tion are shown in Fig. 3.14. Here we consider only the N → ∆ excitations because ∆ is the
strongest resonance in π-N scattering. Our objective is to study the spin-isospin dependence
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Figure 3.14: Three-pion-exchange ring diagrams with pion-exchange transition potentials.

of this interaction, and find a useful approximation. The full interaction has a very complex
structure.

The processes (a) and (b) of Fig. 3.14 are pion-exchange ring diagrams with one ∆
excitation at a time. We will estimate their contribution in this section. The pion-exchange
rings (c), (d) and (e) have two ∆’s at a time and are not considered in detail. All the ring
diagrams lead to interactions of range of order exp[−mπ(rij + rjk + rki)].

The potentials generated by diagrams of type (a) and (b) are respectively denoted by
V 3π,∆R
1 and V 3π,∆R

2 , and their sum V 3π,∆R gives the contribution of ring diagrams with one
∆ at each time. After neglecting the kinetic energies of the nucleons and the ∆ in the
intermediate states, diagram (a) gives:

V 3π,∆R
1,ijk =

∑

cyc

1

(m∆ −mN )2

[
vπ∆N→NN(ik) v

π
jk v

π
NN→∆N(ij) + j ⇀↽ k

]
, (3.168)

where j ⇀↽ k denotes the term obtained by interchanging j and k in the previous term. The
above V 3π,∆R

1 can be reduced to a three-nucleon operator by eliminating the transition spin
and isospin operators in the OPETP using Eqs. (3.73)–(3.75). It is useful to reduce the
V 3π,∆R
1 further by eliminating all the terms quadratic in either τ l or σl (l = i, j, k) with

the Pauli identity, Eq. (3.31). The resulting V 3π,∆R
1 contains very many terms which can be

organized in the following way:

V 3π,∆R
1,ijk = A∆R

3π O3π,∆R
1,ijk , (3.169)
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where

A∆R
3π =

1

27

f 6
πNN

(4π)3
f 2
πN∆

f 2
πNN

m3
π

(m∆ −mN)2
, (3.170)

and

O3π,∆R
1,ijk = 6

(
SI
τS

I
σ + AI

τA
I
σ

)
+ 2

∑

cyc

(
SI
σS

D
τ,ijk + SI

τS
D
σ,ijk + AI

τA
D
σ,ijk + SD

τ,ijkS
D
σ,ijk

)
. (3.171)

The letters S and A denote operators that are symmetric and antisymmetric under the
exchange of j with k. Subscripts τ and σ label operators containing isospin and spin-space
parts respectively, while superscripts I and D indicate operators that are independent or
dependent on the cyclic permutation of ijk. The interaction V 3π,∆R

1 has to be symmetric
under the exchange of i, j, and k, therefore products of S- and A-type operators are not
allowed.

The permutation-independent isospin operators are:

SI
τ = 2 +

2

3
(τ i · τ j + τ j · τ k + τ k · τ i) = 4PT=3/2 , (3.172)

AI
τ =

i

3
τ i · τ j × τ k =

1

6
[τ i · τ j , τ i · τ k] . (3.173)

They occur in all the three cyclic permutations of diagram (a) as well as in those obtained
by interchanging j and k in diagram (a). Therefore their contribution gets multiplied by
six in Eq. (3.171). In Eq. (3.172) we have indicated that SI

τ is a projection operator for the
isospin 3/2 state of three nucleons. Therefore the V 3π,∆R interaction is much stronger in
isospin 3/2 triplets, and one can identify its presence in nuclei. The AI

τ , Eq. (3.173), also
occurs in the commutator part of V 2π

ijk(FM) in Eq. (3.139).

The permutation-dependent isospin operators are:

SD
τ,ijk =

2

3
τ j · τ k , (3.174)

AD
τ,ijk = 0 . (3.175)

The spin-space operators have many terms, and explicit expression for them, obtained
after a long but straightforward calculation starting from Eq. (3.168), are listed in the original
paper [Pieper et al., PRC64, 014001 (2001)].

The V 3π,∆R
2,ijk obtained from diagram (b) in Fig. 3.14, after neglecting the kinetic energies,

is given by

V 3π,∆R
2,ijk =

∑

cyc

1

(m∆ −mN )2
[vπN∆→NN(ik) v

π
∆N→N∆(jk) v

π
NN→N∆(ij) + j ⇀↽ k] . (3.176)
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After appropriate reductions, it can be cast in the form of V 3π,∆R
1,ijk as follows

V 3π,∆R
2,ijk = A∆R

2,3π O
3π,∆R
2,ijk , (3.177)

with

A∆R
2,3π = A∆R

3π

f 2
πN∆

f 2
πNN

, (3.178)

and

O3π,∆R
2,ijk =

8

3
SI
τS

I
σ +

2

3
AI

τA
I
σ −

4

9

∑

cyc

(
SI
σS

D
τ,ijk + SI

τS
D
σ,ijk + AI

τA
D
σ,ijk −

1

2
SD
τ,ijkS

D
σ,ijk

)
. (3.179)

The V 3π,∆R
1,ijk and V 3π,∆R

2,ijk may be approximately combined using f 2
πN∆ ∼ 4 f 2

πNN to obtain

V 3π,∆R
ijk = A∆R

3π

(
O3π,∆R

1,ijk + 4O3π,∆R
2,ijk

)
= A∆R

3π O
3π,∆R
ijk , (3.180)

where

O3π,∆R
ijk =

50

3
SI
τS

I
σ +

26

3
AI

τA
I
σ +

2

9

∑

cyc

(
SI
σS

D
τ,ijk + SI

τS
D
σ,ijk + AI

τA
D
σ,ijk − 13 SD

τ,ijkS
D
σ,ijk

)
.

(3.181)
The strengths of the terms independent of cyclic permutations are larger than those which
depend upon them. Therefore we may use the simpler V 3π,∆R

ijk obtained by neglecting them,
i.e. with the approximate operator

O3π,∆R
ijk ≃ 50

3
SI
τS

I
σ +

26

3
AI

τA
I
σ . (3.182)

The value of A∆R
3π estimated from the observed values of the constants is ≃ 0.002 MeV.

However, this estimate is not robust due to neglect of diagrams (c), (d) and (e) of Fig. 3.14,
of π-N resonances other than the ∆, and of the kinetic energies in the energy denominators.
In practice A∆R

3π is determined from nuclear data.

3.16 Isotensor components of the one pion-exchange

potential

The small difference between the masses m±
π of the charged pions, and m0

π of the neutral
pion have been neglected so far in our calculations of the one pion-exchange potential. We
also considered isoscalar πNN coupling in Eq. (3.10) invariant under rotations in the isospin
space. The OPEP calculated within these approximations is naturally isoscalar.
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Figure 3.15: Neutral and charged pion-exchange interactions. Vertical lines labeled p and n denote
protons and neutrons, and dashed lines labeled π0,+,− denote the charged pions.

In general there can be four independent pion-nucleon coupling constants fπ0pp, fπ0nn,
fπ+np, and fπ−pn, describing the emission and absorption of neutral and charged pions by
nucleons. The available pion-nucleon and nucleon-nucleon scattering data is consistent with
the pion-nucleon coupling being isoscalar, i.e.

fπ0pp = −fπ0nn = fπ+np = fπ−pn = fπNN . (3.183)

The fπ0nn has a minus sign because the neutral pion field φ0 couples to the isospin projection
τz of the nucleon, see Eq. (3.7). Assuming these relations between the coupling constants,
only the mass difference between the charged and neutral pions can be responsible for the
breaking of the isospin symmetry of the OPEP given by Eq. (3.19).

The OPEP between two protons can only be mediated by neutral pions as shown in
panels (a) and (b) of Fig. 3.11. Using the interaction Hamiltonian

Hπ0pp = −fπ0pp

mπ,s

σ ·∇φ̂0(r) = −fπNN

mπ,s

σ ·∇φ̂0(r) , (3.184)

the OPEP between two protons can be easily derived by methods described in Sec. 3.2:

vπpp→pp(r) = vπ
0

(r)

=
f 2
πNN

4π

m0
π

3

(
m0

π

mπ,s

)2 {
Tπ0(r)S12 +

[
Yπ0(r)− 4π

m3
π0

δ(r)
]
σ1 · σ2

}
, (3.185)

where mπ,s is a mass scale, often chosen equal to the charged pion mass mπ+ , to make the
coupling constant fπNN dimensionless, and Yπ0(r) and Tπ0(r) are dimensionless functions of
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mπ0r defined in Eqs. (3.28) and (3.29). Similarly, from the interaction Hamiltonian

Hπ0nn = −fπ0nn

mπ,s
σ ·∇φ̂0(r) =

fπNN

mπ,s
σ ·∇φ̂0(r) , (3.186)

we obtain
vπnn→nn(r) = vπpp→pp(r) = vπ

0

(r). (3.187)

The OPEP between a neutron-proton pair can either be mediated by π0, giving vπnp→np

and vπpn→pn illustrated in panels (c) and (d) of Fig. 3.15, or by charged pions giving vπnp→pn

and vπpn→np, panels (e) and (f) of Fig. 3.15 (e). The π0-mediated potentials are:

vπnp→np(r) = vπpn→pn(r) = −vπ0

(r) , (3.188)

and the minus sign stems from the sign difference between Hπ0pp and Hπ0nn, or equivalently
between the τz of the neutron and the proton. The potentials mediated by the charged pions
come from the interaction Hamiltonian

Hπ+,−NN = −fπNN

mπ,s

σ ·∇
[
φ̂+(r)τ− + φ̂−(r)τ+

]
, (3.189)

having charged pion fields given by Eq. (3.3) and nucleon isospin raising/lowering operators
defined in Eq. (3.8). We obtain:

vπnp→pn(r) = vπpn→np(r) = 2 vπ
±

(r), (3.190)

vπ
±

(r) =
f 2
πNN

4π

mπ±

3

(
mπ±

mπ,s

)2 {
Tπ±(r)S12 +

[
Yπ±(r)− 4π

m3
π±

δ(r)
]
σ1 · σ2

}
,(3.191)

where Tπ±(r) and Yπ±(r) are functions of mπ±r. These charge exchange potentials contain
the product of nucleon isospin matrix elements:

〈n|τ−|p〉〈p|τ+|n〉 = 2 , (3.192)

and are therefore twice the vπ
±

defined such that

vπ
0

= vπ
±

when mπ0 = mπ± . (3.193)

The isospin symmetry is violated by the difference between vπ
0

and vπ
±

caused by that
between mπ± and mπ0 .

The total OPEP can be written as a sum of isoscalar (IS) and isotensor (IT) terms as
follows

vπTOT(r) = vπIS(r) τ 1 · τ 2 + vπIT(r) Tij , (3.194)
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where Tij is the tensor operator in isospin space defined by

Tij = 3 τz,i τz,j − τ i · τ j , (3.195)

similar to the more familiar Sij in configuration space, and

vπIS =
1

3

[
2vπ

±

(r) + vπ
0

(r)
]
, (3.196)

vπIT =
1

3

[
vπ

0

(r)− vπ
±

(r)
]
. (3.197)

Equations (3.187), (3.188) and (3.190) can be easily obtained from the above by means of
the identity

τ i · τ j = 2P τ
ij − 1, (3.198)

where P τ
ij exchanges the isospins of i and j. Historically, the v

π
IS is called the charge indepen-

dent part, while the vπIT is the charge dependent part of OPEP. Just as the tensor operator
Sij is zero in states with spin S = 0, the isotensor operator is zero in states with isospin
T = 0. Therefore only the IS part of OPEP contributes to the interaction of two nucleons
in the T = 0 state.

In principle the two- and three-pion-exchange interactions discussed in Secs. 3.12 to 3.15
should also have isospin symmetry breaking terms. However, as indicated in those sections,
it is difficult to calculate these interactions exactly, and their strengths have to be determined
from experimental data.

3.17 Finite size effects

Thus far we have considered nucleons as point particles coupled to pion fields. However, they
are in fact finite objects made up of quarks and gluons. The interaction of a pion field φ(r)
with a nucleon having its center of mass at r, and a density distribution given by ρ(r′ − r),
is described with the interaction Hamiltonian

HFS
πNN = −fπNN

mπ

∫
d3r′ ρ(r′ − r)σ ·

[
∇

′φ̂(r′) · τ
]
, (3.199)

whose superscript FS stands for finite size. The nucleon density distribution is conveniently
normalized such that ∫

d3r′ ρ(r′ − r) = 1. (3.200)

Equation (3.10) for the coupling of point nucleons with the pion field follows from Eq. (3.199)
by using δ(r′ − r) to describe the nucleon density distribution.
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The OPEP is obtained from the pion emission and absorption matrix elements in Sec. 3.2.
We want to recalculate these matrix elements for the above HFS

πNN . Consider the first matrix
element, given by Eq. (3.15), describing the emission of a pion by nucleon 1. It becomes:

〈I|HFS
πNN |i〉 = i

fπNN

mπ

1√
2ωq

〈χ′
1|σ1 · q τ1,−α|χ1〉

∫
d3r d3r′ ρ(r′ − r) ei(p−p′)·r e−iq·r′

= 〈I|HπNN |i〉 FπNN (q) , (3.201)

where

FπNN(q) =
∫
d3r ρ(r)e−iq·r , (3.202)

since p − p′ = q. The matrix element for point nucleons 〈I|HπNN |i〉, given by Eq. (3.15),
contains everything except the Fourier transform FπNN (q) in the matrix element of HFS

πNN .
When the nucleon density distribution ρ(r′−r) is spherically symmetric FπNN(q), called the
πNN vertex form factor, is real and depends only on the magnitude q of the momentum of
the emitted pion.

The results obtained for the point nucleon HπNN can be easily generalized for the HFS
πNN

by adding a factor FπNN(q) for every emitted or absorbed pion, i.e. at every πNN vertex
in the time-ordered diagrams describing the process. In particular the OPEP in momentum
space, given by Eq. (3.19), becomes:

ṽπ12(q) = −f
2
πNN

m2
π

F 2
πNN (q)

q2 +mπ
2
τ 1 · τ 2 σ1 · q σ2 · q . (3.203)

The configuration space vπ12(r) is obtained by using the Yukawa function yFSπ (r) including
form factors, namely

yFSπ (r) =
∫ d3q

(2π)3
F 2
πNN(q)

q2 +mπ
2
e−iq·r, (3.204)

in Eq. (3.20). Effects of the finite sizes of both the nucleon and ∆ can be included by
calculating the OPETP from the modified Yukawa functions containing an FπN∆(q) for each
πN∆ vertex and an FπNN(q) for each πNN vertex in their integrand.

Pions, being made up of quarks, anti-quarks and gluons, also have a finite size. In prin-
ciple its effects are included in the phenomenological vertex form factors. The fundamental
theory of quantum chromodynamics (QCD) describing pion-nucleon interactions has not yet
advanced sufficiently to allow theoretical calculations of the pion-nucleon coupling constants
and form factors. Thus FπNN(q) and FπN∆(q) have to be experimentally determined together
with fπNN and fπN∆. Note that pion-nucleon scattering does not give direct information
of the pion-nucleon form factors because a nucleon cannot absorb a real pion conserving
energy and momentum. The πNN vertex in OPEP must always have a virtual pion. For
the same reason charge distributions of finite systems like nuclei are generally studied by
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electron-nucleus scattering, in which the photon exchanged between the electron and the
nucleus is virtual, rather than from interactions of nuclei with real photons.

The form factor

F 2
πNN(q) =

Λ2

Λ2 + q2
(3.205)

is very simple to use. It is unity in the limit q → 0, as required by the normalization in
Eq. (3.200), and goes to zero for q2 ≫ Λ2. The size of the nucleon is of the order of 1 fm,
and hence we expect FπNN to become small when the pion wavelength λ = 2π/q ∼ 1 fm,
i.e. q ∼ 2π fm−1. Therefore Λ ∼ 1 GeV is typically used. The Yukawa function modified by
this form-factor is given by

yFSπ (r) =
∫ d3q

(2π)3
Λ2

Λ2 + q2
1

q2 +m2
π

e−iq·r =
Λ2

Λ2 −m2
π

(
e−mπr

4π r
− e−Λr

4π r

)
. (3.206)

It is just the difference between two Yukawa functions with range parameters mπ and Λ. The
first term of this modified Yukawa function corresponds to the OPEP for point nucleons,
given by Eq. (3.26) but renormalized by the factor Λ2/(Λ2−m2

π), while the second term gives
a one-pion-exchange-like potential with range parameter Λ and strength renormalized by an
additional factor Λ3/m3

π. From their difference the following OPEP, including the finite size
effects implied by the form factor in Eq. (3.205), results:

vπ,FS12 (r) =
f 2
πNN

4π

mπ

3
τ 1 · τ 2

[
T FS
π (r)S12 + Y FS

π (r)σ1 · σ2

]
, (3.207)

with

Y FS
π (r) =

Λ2

Λ2 −m2
π

[
Yπ(r)−

Λ3

m3
π

YΛ(r)

]
, (3.208)

T FS
π (r) =

Λ2

Λ2 −m2
π

[
Tπ(r)−

Λ3

m3
π

TΛ(r)

]
, (3.209)

where YΛ(r) and TΛ(r) are dimensionless functions of Λr defined by Eqs. (3.28) and (3.29).
The point particle vπ12(r) is very singular at the origin: it contains a δ(r) function, and

the Tπ(r) diverges as 1/r3. In contrast, the vπ,FS12 (r) obtained from the simple πNN form
factor in Eq. (3.205) is much less singular. The δ(r) is replaced by (Λ/mπ)

3 YΛ(r) which is
proportional to 1/r at small r. The T FS

π (r) and Y FS
π (r) obtained with this form factor also

have 1/r behavior at small r. The various dimensionless Yπ and Tπ functions are shown in
Figs. 3.12 and 3.13.

In nonrelativistic mechanics, the nucleon density distribution ρ(r) can be easily calculated
from the form factor by inverting the Fourier transform in Eq. (3.202):

ρ(r) =
∫

d3q

(2π)3
FπNN(q)e

iq·r =
1

2π2 r

∫
dq q FπNN(q) sin(qr) . (3.210)
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Figure 3.16: The dimensionless Yπ(r) functions without and with various short range cutoffs. The
Y FS
π and Y MP

π are with Λ = 6mπ, and the A18 potential has c = 2.1 fm−2.
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Figure 3.17: The dimensionless Tπ(r) functions without and with various short range cutoffs. The
TFS
π and TMP

π are with Λ = 6mπ, and the A18 potential has c = 2.1 fm−2.

The simple form factor of Eq. (3.205) decreases very slowly as 1/q at large q. Therefore
the ρ(r) obtained from it is singular at the origin, and consequently the vπ,FS(r) has a 1/r
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behavior. The class of form factors

FπNN(q) =
Λ2n

(Λ2 + q2)n
, (3.211)

has been used with various values of n. The simple form factor considered above has n = 1/2,
and for historical reasons those having n = 1, 2 are called monopole and dipole form factors,
respectively. The density distributions corresponding to these form factors are:

monopole ρ(r) =
Λ3

4π
YΛ(r) , (3.212)

dipole ρ(r) =
Λ3

8π
e−Λr . (3.213)

The charge density of a proton is approximately given by the exponential distribution cor-
responding to the dipole form factor. However, the nucleon density to which the pion field
couples may not have the distribution of proton charge because virtual pions in the proton
contribute to proton charge distribution.

The Yukawa function modified by the monopole form factor, labeled with superscript
MP, can be easily calculated by differentiating the yFSπ (r) with Λ2. It is given by

yMP
π (r) =

Λ4

(Λ2 −m2
π)

2

[
e−mπr

4π r
− e−Λr

4π r
− 1

8πΛ
(Λ2 −m2

π)e
−Λr

]
, (3.214)

and the dimensionless Y and T functions in the modified OPEP of Eq. (3.207) become in
this case:

Y MP
π (r) =

Λ4

(Λ2 −m2
π)

2

[
Yπ(r)−

Λ3

m3
π

YΛ(r) +

(
Λ2

m2
π

− 1

)(
1

mπr
− Λ

2mπ

)
e−Λr

]
, (3.215)

and

TMP
π (r) =

Λ4

(Λ2 −m2
π)

2

[
Tπ(r)−

Λ3

m3
π

TΛ(r)−
1

2

(
Λ2

m2
π

− 1

)(
1

mπr
+

Λ

mπ

)
e−Λr

]
, (3.216)

they are shown in Figs. 3.16 and 3.17. The Y MP
π (r = 0) is finite, while TMP

π (r = 0) = 0. The
δ(r) term in the point particle OPEP, Eq. (3.26), spreads out and acquires a size proportional
to the nucleon density distribution. It dominates the Y MP

π at small r where it is negative.
In realistic models of the NN interaction it is convenient to absorb the smeared δ-function

part of OPEP in the phenomenological short range part. Algebraic cutoffs are used to make
Yπ(r), Tπ(r) → 0 as r → 0. For example, the functions used in the Urbana-Argonne models
of the NN interaction are:

Y UA
π (r) =

e−mπr

mπr

(
1− e−cr2

)
, (3.217)

TUA
π (r) =

(
3

m2
πr

2
+

3

mπr
+ 1

)
e−mπr

mπr

(
1− e−cr2

)2
. (3.218)
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The value of the cutoff parameter c is adjusted to reproduce the observed NN scattering
data. These functions are also shown in Figs. 3.16 and 3.17.

The OPEP used in realistic models of the two-nucleon interaction always includes nucleon
finite size effects. For brevity, from now on we will assume that these are contained in the
functions Yπ(r) and Tπ(r) and omit the superscripts, such as MP or UA, specifying the
cutoffs of these functions. The isotensor parts of vπ (Sec. 3.16) are also obtained including
the finite size effects. The functions Yπ±,0(r) and Tπ±,0(r) use the physical pion masses m±,0

π

and include cutoffs. The charge dependent OPEP’s in Eqs. (3.185) and (3.191) are given by

vπ
±,0

=
f 2
πNN

4π

m±,0
π

3

(
mπ±,0

mπ,s

)2

[Yπ±,0(r)σ1 · σ2 + Tπ±,0(r)S12] , (3.219)

and the vπnn→nn, v
π
pp→pp, v

π
np→np and v

π
np⇀↽pn are obtained from them using Eqs. (3.187), (3.188)

and (3.190). The isoscalar and isotensor parts are projected out with Eqs. (3.194)–(3.197).

3.18 Momentum distribution of exchanged pions

Consider a system of A nucleons in state |A〉. In absence of the pion-nucleon coupling,
Eq. (3.10), this state will have no pions in it. It is an eigenstate of a Hamiltonian H0 which
contains only nucleon degrees of freedom. We treat the pion-nucleon interaction HπNN as
a small perturbation. In first order perturbation theory, the amplitude of the state |I;k, α〉
having a pion with momentum k and charge state α, and the nucleons in the state |I〉 mixed
with the unperturbed state |A〉, is given by

A(I;k, α) =
〈I;k, α|HπNN |A〉
EA − EI − ωk

= −ifπNN

mπ

A∑

i=1

1

ωk

√
2ωk

〈I|σi · k τi,−α e
−ik·ri|A〉 , (3.220)

where we have neglected the nucleon kinetic energies and approximated the energy denomi-
nator EA − EI − ωk by −ωk.

The probability of the system having a pion of momentum k is generally expressed as
the expectation value of the pion number operator nπ(k). In the Hilbert space of nuclear
wave functions this operator is represented by

〈A|nπ(k)|A〉 =
∑

α=±,0

∑

I

|A(I;k, α)|2

=
f 2
πNN

m2
π

1

2ω3
k

A∑

i,j=1

〈A|σi · kσj · k τ i · τ j e
−ik·(ri−rj)|A〉 . (3.221)
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Figure 3.18: Examples of first and second order diagrams that contribute to the pion number in
nuclei. The dashed line with an “x” denotes the pion number operator, the thin and thick vertical
lines show propagating nucleons and ∆’s, and the wavy lines represent realistic NN → NN and
transition potentials. The self energy pions shown in diagrams (a) and (b) are not counted by the
operators of Eqs. (3.223) and (3.224). Contributions of second order diagrams like (d) and (e) are
included along with higher order corrections when eigenfuctions of realistic nuclear Hamiltonian are
used to calculate the expectation values. Diagrams such as (f) and (g) containing Delta excitations
are included via the operator in Eq. (3.224).

The terms in the above expectation value with i = j occur in isolated nucleons, include the
self energy pions as illustrated in Fig. 3.18. Omitting these, the expectation value of the
number of exchanged pions is given by

〈A|δnπ(k)|A〉 =
f 2
πNN

m2
π

1

ω3
k

A∑

i<j=1

〈A|σi · k σj · k τ i · τ j e
−ik·(ri−rj)|A〉

= 〈A|
A∑

i<j=1

−e
−ik·(ri−rj)

ωk
ṽ π
ij(k) |A〉 , (3.222)

where ṽπij(k) is the momentum space OPEP of Eq. (3.19). The number operator δnπ(k) for
the pions being exchanged by nucleons is related to OPEP, i.e.

δnπ(k) =
A∑

i<j=1

−e
−ik·(ri−rj)

ωk
ṽπij(k) . (3.223)

Expectation values of this operator have been calculated in light nuclei with quantum Monte
Carlo methods to estimate the momentum distribution of pions being exchanged by nucleons
in nuclei.
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When |A〉 is a state of noninteracting nucleons, the expectation value of Eq. (3.222)
provides just the contribution of first order in ṽ π to the 〈δnπ(k)〉, shown by diagram (c) in
Fig. 3.18. However, the ṽ π is strong, and the contributions of all orders need to be considered.
When |A〉 is the eigenstate of a realistic nuclear Hamiltonian, then the expectation value
above, Eq. (3.222), includes diagrams with all orders of vNN . Those with one vNN are
shown by (d) and (e) in Fig. 3.18. Since vNN contains vπ this expectation value contains
contributions of all orders in vπ.

The πN∆ coupling is strong and produces a significant fraction of the pions in nuclei.
Including it leads to

δnπ(k) =
A∑

i<j=1

δnπ
ij(k) , (3.224)

with

δnπ
ij(k) = −e

−ik·(ri−rj)

ωk

[
ṽ π
ij,NN→NN(k) + ṽ π

ij,NN⇀↽N∆(k) + ṽ π
ij,NN⇀↽∆N(k)

+ ṽ π
ij,NN⇀↽∆∆(k) + ṽ π

ij,N∆⇀↽∆N(k)
]
, (3.225)

where ṽ π
XY⇀↽X′Y ′(k) are the OPETP discussed in Sec. 3.11. In order to sum the higher order

contributions, the above operator must be used with eigenfunctions of the Hamiltonian

H =
A∑

i=1

[
PN
i

(
mN − 1

2mN
∇2

i

)
+ P∆

i

(
m∆ − 1

2m∆
∇2

i

)]

+
A∑

i<j=1

[
vij,NN→NN + vij,NN⇀↽N∆ + vij,NN⇀↽∆N + vij,NN⇀↽∆∆ + vij,N∆⇀↽∆N

]
, (3.226)

where PN
i and P∆

i are nucleon and ∆ projection operators. The interactions vij,XY→X′Y ′ must
contain the vπij,XY→X′Y ′ in the pion number operator, and also fit the NN scattering data.
Such interactions were first studied by von Hipple and Sugawara, and methods to calculate
the eigenfunctions of the above Hamiltonian were developed by Sauer and collaborators for
A = 3. Approximations for A > 3 were described in papers by the present authors and
collaborators.

The results for the momentum distribution

δNπ(k) ≡ k2

2π2A
〈A|δnπ(k)|A〉 , (3.227)

of exchanged pions per nucleon in few-body nuclei and nuclear matter are shown in Fig. 3.19.
These are obtained with the Argonne v28 interaction containing OPEP and OPETP. At small
values of k the δNπ(k) is negative indicating that nucleons bound in nuclei have fewer low
momentum pions than free nucleons. Self energy processes shown in diagram (A) of Fig. 3.18
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Figure 3.19: The momentum distribution of excess pions in few-body nuclei and nuclear matter.

are suppressed in nuclei due to the Pauli blocking of the nucleon in the intermediate state,
when k is small. This leads to negative δNπ(k) at small k.

The peak in δNπ(k) is between 2 and 3 fm−1 with the Argonne v28 interaction. The
position of this peak is sensitive to the short range cutoffs of the OPEP and OPETP and the
repulsive core in the interaction model. Nevertheless such theoretical calculations indicate
that most of the attraction from OPEP and OPETP comes from pions with momenta in the
1 to 4 fm−1 range.

After emitting a pion of momentum ≃ 2.5 fm−1 the nucleon will also obtain a momentum
of that order, and a kinetic energy of ≃ 130 MeV. This energy is not very small compared
to m∆−mn ≃ 300 MeV. Therefore the estimates of the strengths of two-pion-exchange two-
and three-nucleon interactions, and of three-pion-exchange three-nucleon interaction given in
Table 3.1 and Eqs. (3.140) and (3.169), neglecting nucleon kinetic energies, are not expected
to be very accurate.

The integral

δNπ
TOT =

∫ ∞

0
dk δNπ(k) , (3.228)

gives the number of excess pions in nuclei, per nucleon, relative to that in free nucleons.
The estimated values of δNπ

TOT in 2H, 3H, 4He and nuclear matter at equilibrium density are
respectively 0.024, 0.05, 0.09 and 0.18. They suggest, for example, that the 4He nucleus has
a pion being exchanged about a third of the time.

A great deal of effort has been made to measure the δNπ(k) in nuclei. One can hope to
knock out the pions in light nuclei by high energy electrons. In heavier nuclei, the knocked
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out pions are estimated to have significant “final state interactions” on their way out of the
nucleus. The experimental data on light nuclei confirms the negative dip in δNπ(k) at small
k, but not the positive peak. The relation between the pion-exchange potential and the δNπ

operator–see Eqs. (3.223) and (3.224)–is simple and direct. However, the interpretation of
the pion knock out experiments is complex, particularly because the exchanged pions are
not free, and do not have a unique energy determined by their momentum. Nevertheless, an
experimental verification of the height and position of the peak of δNπ(k) is important.

3.19 Summary

In the nonrelativistic limit the OPEP can be calculated exactly including differences between
pion masses. It gives a major part of the two-nucleon interaction, and thus helps put nuclear
physics on at least a semi quantitative footing. However, the two-pion exchange two-nucleon
interaction cannot yet be calculated exactly. It can be easily shown that it contains all
the six isoscalar static operators Op listed in Eq. (3.124). The strengths of these and the
momentum dependent parts of v2πNN have to be obtained from data.

The spin-isospin dependence and the spatial structure of the two-pion exchange three-
nucleon interaction can also be derived from theory for general S- and P-wave π-N interac-
tions. However, the strengths of these interactions cannot yet be calculated exactly. It is
likely that three-pion-exchange three-nucleon interactions are important in nuclear physics
due to their unique isospin dependence. Their general form can be calculated assuming that
they are mediated by N → ∆ excitations.

It is necessary to include pion and nucleon finite size effects in the pion-exchange interac-
tions. They modify the OPEP and OPETP at small distances, and are difficult to determine
due to the unknown nature of nuclear forces at small distances.



Chapter 4

Electromagnetic Interactions

The longest range part of the interaction between nucleons is given by electromagnetic (EM)
forces mediated by the massless photon. The largest of these is the Coulomb interaction
between protons. It is responsible for the neutron excess and fission instability of heavy
nuclei, and has a large effect on the structure of neutron stars. The magnetic dipole-dipole
interaction between nucleons is small and it has been neglected in most of the past studies.
However, we can now calculate properties of light nuclei with over 99% accuracy. At this
level the magnetic interactions must be included. For example, they give a contribution of
∼18 keV to the −2.224575(9) MeV ground-state energy of the deuteron, which corresponds
to 0.8%. In addition, the scattering of two protons has been most precisely measured. The
electromagnetic magnetic forces have a large effect on this scattering, and as has been stressed
by the Nijmegen group, it is essential to include corrections of order α2 in the partial wave
analysis of the precise p-p scattering data.

The EM interactions inherently break the isospin symmetry of the strong interactions.
It is therefore simpler to discuss them as vγNN ′ where NN ′ = pp , pn, np and nn. Since the
photon has zero charge, there is no charge exchange interaction:

vγ(np ⇀↽ pn) = 0 . (4.1)

The isospin dependence of the vγ can be expressed as:

vγ = vγ1 + vγτ τ i · τ j + vγIV (τz,i + τz,j) + vγIT Tij + . . . , (4.2)

where Tij is the isotensor (IT) operator in Eq. (3.195) and τz,i + τz,j is an isovector (IV)
operator. The smaller spin-orbit parts of vγ have additional, so called class-4 terms listed in
Sec. 4.2, and denoted by the . . . in the above equation. The various isospin terms of vγ can
be easily extracted from the vγNN ′ . We obtain:

vγ1 =
1

4

(
vγpp + 2 vγpn + vγnn

)
, (4.3)

73
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vγIV =
1

4

(
vγpp − vγnn

)
, (4.4)

vγIT = vγτ =
1

12

(
vγpp − 2vγpn + vγnn

)
, (4.5)

Note that Eq. (4.1) requires that the complete vγ does not have any τ i ·τ j part. In fact, the
vγτ term in vγ is canceled by the τ i · τ j part of v

γ
IV Tij.

The calculation of the EM interactions is well described in standard texts. We will
describe the vγ in the recent Nijmegen and Argonne models to establish the notation. The vγ

depends upon the distribution of charge and magnetization in proton and neutron. The EM
form factors of the nucleon have been measured by electron-nucleon and electron-deuteron
scattering. The commonly used Sacks form factors are normalized such that the electric
form factors denoted by GN

E (q) equal the total nucleon charge at momentum transfer q = 0,
while the the magnetic, GN

M(q) equal the nucleon magnetic moment µN . They are more
convenient because they contain the observed magnetic moments of the nucleons. The q = 0
values corresponding to this normalization are:

Gp
E(q = 0) =

Gp
M(q = 0)

µp

=
Gn

M(q = 0)

µn

= 1 , and Gn
E(q = 0) = 0 . (4.6)

Empirically it is known that the first three are well approximated by the dipole form:

Gp
E(q) =

Gp
M(q)

µp
=
Gn

M(q)

µn
=

(
1 +

q2

b2

)−2

, (4.7)

where b = 4.27 fm−1; and the Gn
E(q) by

Gn
E(q) = βn q

2

(
1 +

q2

b2

)−3

. (4.8)

Here βn denotes the slope of Gn
E at q2 = 0. From electron-neutron scattering experiments

we obtain:

βn =

[
Gn

E(q)

dq2

]

q=0

= 0.0189 fm2 . (4.9)

However, recent experiments indicate deviations from the above dipole forms at large values
of q. Dipole forms are assumed in the Argonne v18 model and the following sections mainly
because they provide a good approximation, and lead to analytic expressions.

4.1 The vγ(pp)

The vγ(pp) is expressed as a sum of six terms:

vγ(pp) = vC1(pp) + vDF (pp) + vC2(pp) + vV P (pp) + vDD(pp) + vLS(pp) . (4.10)
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The vγC1(pp) contains the leading Coulomb interaction between protons:

vγC1(pp) = α′FC(r)

r
, (4.11)

FC(r) = 1−
(
1 +

11

16
x+

3

16
x2 +

1

48
x3
)
e−x , (4.12)

where x = b r and

α′ = α
2 k

mp vlab
(4.13)

The function FC(r) takes into account the size of the proton charge distribution in the dipole
approximation. In general it is given by the Fourier transform:

FC(r) = 4π
∫
d3q

eiq·r

q2
[Gp

E(q)]
2 . (4.14)

When r → ∞ FC(r) → 1, and FC(r = 1 fm) = 0.874. The Coulomb potential vγC1 is shown
in Fig. 4.1 for the empirical value b = 4.27 fm−1 along with the other EM terms in vγNN ′ .

The α′, derived by Breit in 1955, takes into account the energy dependence of the Coulomb
interaction via relativistic effects. Here k is the relative momentum in the center of mass
(COM) frame, mp is the proton mass and vlab is the proton velocity in the laboratory frame.
It is simple to derive α′ in the COM frame, as a function of the velocity vcm of the protons
in that frame. We have:

k =
mpvcm√
1− v2cm

, vlab =
2 vcm

1 + v2cm
, α′ = α

1 + v2cm√
1− v2cm

≃ α
(
1 +

3

2
v2cm + . . .

)
. (4.15)

The kinematical relativistic corrections can be easily studied using the “relativistic Hamil-
tonian”:

HR =
∑

i

√
m2 + p2

i +
∑

i<j

vij + . . . , (4.16)

which retains only the nucleon degrees of freedom. It is obviously correct for non interacting
nucleons, and the interactions vij, Vijk, . . . are assumed to contain relativistic effects. These
interactions depend on the velocities of the interacting particles. The Schrödinger equation
HR Ψ = E Ψ is called the “relativistic Schrödinger equation”. It neglects the antiparticle
degrees of freedom.

The Coulomb interaction between two point protons in the COM frame, including the
current-current part, is given by α (1 + v2cm)/r, and the relativistic pp Schrödinger equation
in the COM frame reads:

[
2
√
m2

p −∇2 + α(1 + v2cm)
1

r

]
ψ(r) = 2

√
m2

p + k2 ψ(r) . (4.17)
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The strong pp interaction is neglected in the above equation because most of the Coulomb
contribution comes from large r. Since the Coulomb potential is small, the above equation
implies:

−∇
2 ψ(r) ≃ k2 ψ(r) . (4.18)

Therefore we rewrite it as:
[
2
√
m2

p + k2 − k2 −∇2 + α(1 + v2cm)
1

r

]
ψ(r) = 2

√
m2

p + k2 ψ(r) , (4.19)

and expand in powers of (k2 + p2)/(m2
p + k2). Keeping only the term of the lowest order

gives the “nonrelativistic” Schrödinger equation:

(
−∇

2

mp
+ α′1

r

)
ψ(r) =

k2

mp
ψ(r) , (4.20)

with Breit’s α′ given by Eqs. (4.13) or (4.15). Note that at Elab ≃ 200 MeV, α′ ∼ 1.16α and
the correction is significant. However, it is mostly of order v2cm.

4.1.1 Corrections to pp Coulomb interaction

The vDF in Eq. (4.10) is the Darwin-Foldy relativistic correction to the Coulomb interaction,
while the vC2 and vV P are the second order Coulomb and vacuum polarization corrections,
both of order α2. These corrections are rather small, as can be seen in Fig. 4.1, but it is
necessary to include them in order to use the high precision data on pp scattering at small
energies for modeling the strong NN interaction. We obtain:

vDF (pp) = − α

4m2
p

Fδ(r) (4.21)

Fδ(r) = −∇
2 [FC(r)/r] = b3

(
1 + x+

x2

3

)
e−x

16
, (4.22)

for the dipole form factor. For point charges FC = 1, the Darwin-Foldy term has zero range.
The proton finite size removes the δ-function singularity, and gives a vDF of range ∼ 1/b.

The vC2(pp) correction is given by

vC2(pp) = − α

2m2
p

[
(∇2 + k2)

Fc(r)

r
+
Fc(r)

r
(∇2 + k2)

]
≈ −αα

′

mp

[
FC(r)

r

]2
, (4.23)

The approximation is based on the two-body Schrödinger equation

[
−∇

2

mp
+ vpp(r)

]
ψ(r) =

k2

mp
ψ(r) . (4.24)
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Figure 4.1: The pp and np Coulomb potentials along with the corrections to the pp Coulomb
potential. The Coulomb potential between static point protons is shown by the long dashed
line α/r.

It is valid at large values of mπ r) where the strong part of vpp becomes negligible, and its
leading term becomes vC1(pp). In this important region the Schrödinger equation gives

(∇2 + k2) ≃ vC1(pp) = α′ FC(r)

r
. (4.25)

The use of F 2
C(r) in the expression for vC2(pp) Eq. (4.23) removes the 1/r2 singularity

approximately.

Finally, the vV P (pp) correction is given by:

vV P (pp) =
2αα′

3π

FC(r)

r

∫ ∞

1
dy e−(2me r) y

[
1 +

1

2y2

] √
y2 − 1

y2
. (4.26)

In the above equation, the FC(r) approximately represents the proton size effect. In fact
this effect has been treated exactly, but the simple approximation is fairly accurate.
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4.1.2 Magnetic interactions in vγ(pp)

The magnetic dipole-dipole interaction in vγ(pp) in Eq. (4.10) is given by

vDD(pp) = − α

4m2
p

µ2
p

[
2

3
Fδ(r)σi · σj +

Ft(r)

r3
Sij

]
, (4.27)

Ft(r) = 1−
(
1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 +

1

144
x5
)
e−x , (4.28)

for the dipole approximation. In the above equation, µp is in units of nuclear magnetons.
Thus the magnetic moment of proton, µ = µp(e/2mp), and the strength of vDD(pp) is
given by µ2/4π = αµ2

p/(4m
2
p) as per Eq. (3.52). We can easily verify that the vDD(pp) for

point protons is given by Eq. (3.52) apart from proton size effects. Note that there are no
magnetic Darwin-Foldy terms when Sachs form factors are used. The magnetic dipole-dipole
interactions between nucleons are shown in Fig. 4.2.
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Figure 4.2: The pp, np and nn magnetic dipole-dipole interactions. The curves labeled
σ(pp), σ(np) and σ(nn) give the σi · σj parts, while those labeled t(pp), t(np) and t(nn)
give the tensor parts.
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Finally, the spin-orbit vLS(pp) correction between the spin and orbital magnetic moments
is given by

vLS(pp) = − α

2m2
p

(4µp − 1)
Fls(r)

r3
L · S , (4.29)

Fls(r) = = 1−
(
1 + x+

1

2
x2 +

7

48
x3 +

1

48
x4
)
e−x , (4.30)

for dipole form factors. It originates from the interaction of one of the protons magnetic
moments with the magnetic field generated by the orbital motion of the other proton. The
spin-orbit corrections are shown in Fiq. 4.3.
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Figure 4.3: The pp and np electromagnetic spin-orbit interactions.

4.2 The vγ(pn)

The pn EM interaction is expressed as

vγ(pn) = vC1(pn) + vDD(pn) + vLS(pn) + . . . . (4.31)
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The Coulomb interaction due to the neutron charge distribution is given by

vC1(pn) = αβn
Fpn(r)

r
, (4.32)

Fpn(r) = b2
(
15 x+ 15 x2 + 6 x3 + x4

) e−x

384
, (4.33)

for the dipole form factors. The vC1(pn) ≪ vC1(pp). It peaks at r ≃ 1 fm, where it is less
than 1% of vC1(pp) (see Fig. 4.1).

The vDD(pn) correction is obtained by replacing a µp/(2mp) by the neutron magnetic
moment, µn/(2mn), in the strength of vDD(pp) of Eq. (4.27) to obtain

vDD(pn) = − α

4mnmp
µp µn

[
2

3
Fδ(r)σi · σj +

Ft(r)

r3
Sij

]
. (4.34)

This correction is positive since µn is negative (see Fig. 4.2).
The EM spin-orbit interaction between protons and neutrons is due to that of the neutron

magnetic moment with protons orbital magnetic moment. It is therefore given by

vLS(pn) = − α

2mnmr
µn
Fls(r)

r3
L · σn . (4.35)

Here mr = mpmn/(mp +mn) is the pn reduced mass. The L ·σn operator can be written as

L · σn = L · S∓ L ·A , A =
1

2
(σi − σj) , (4.36)

where the upper/lower sign applies for pn/np interaction. The new operator A is antisym-
metric so that vLS(pn) = vLS(np). The A term is known as the class-4 charge asymmetric
force. It is very small, but it mixes the spin singlet and triplet np states and affects the
magnetic moment scattering amplitude.

4.3 The vγ(nn)

In the present context the Coulomb interaction between neutrons is extremely small, and is
neglected. There is also no spin-orbit contribution, and therefore

vγ(nn) ≃ vDD(nn) = − α

4m2
n

µ2
n

[
2

3
Fδ(r)σi · σj +

Ft(r)

r3
Sij

]
, (4.37)

by trivial changes in Eq. (4.27). It is compared with the pp and pn dipole-dipole interaction
corrections in Fig. 4.2.



Chapter 5

Electromagnetic Current of Nucleons
and Nuclei

The interaction of an external electromagnetic (EM) field with a nucleus is given by

HEM = e
∫
dxAµ(x) jµ(x)

= e
∫
dr
[
φ0(x) ρc(x)−A(x) · j(x)

]
. (5.1)

Here Aµ(x) is the four-vector EM field acting on the nucleus, and jµ(x) is the nuclear
four-current density operator with the proton charge e > 0 factored out. The Aµ(x) has
components consisting of the electrostatic potential, φ0(x) and the vector potential A(x),
while the components of the four-current density jµ are the charge density ρc(x) and the
vector current j(x) (hereafter, the superscript µ from Aµ and jµ is dropped unless necessary).

The interaction of the nucleus with the EM field determines the EM moments of nuclei
and the radiative capture and decay rates. The interaction in electron-nucleus scattering
processes can be regarded as that of the EM field of the virtual photon emitted by the
scattered electron with the nuclear EM current.

The EM field is quantized, and the field operator A(x) either annihilates or creates a
photon. Thus it is useful to classify the terms in the nuclear current operator according to
the process induced by the photon as illustrated in Fig. 5.1 and described below. Few of the
many possible processes are shown just to illustrate the classification, and a photon can also
be emitted in these same processes.

• One-body currents: Individual nucleons in nuclei as well as in vacuum can absorb
photons via their charges and magnetic moments. These terms are illustrated by
diagram (1) in Fig. 5.1, and are included in the one-body current j1(i), where the label
i runs over nucleons 1, . . . , A in the nucleus.

81
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Figure 5.1: Feynman diagrams illustrating the classification of terms in the nuclear four-
current operator. Thin and thick vertical lines denote nucleons and deltas, while thin dashed
lines represent pions and the wavy line shows the absorbed photon. The thick dashed line
denotes heavier mesons such as ρ and ω. Only one diagram per class is shown for brevity.
Many more diagrams contribute to each of the classes. Momentum labels are omitted from
three-body current diagrams to avoid clutter.

Only one nucleon absorbs all the momentum of the photon via one-body current.
However, that nucleon can later share the absorbed momentum with other nucleons
via two- and three-nucleon interactions. These interactions determine the final state
of the nucleus, and are not a part of the current operator. They are often called final
state interactions in approaches based on perturbation theory. Interactions between
nucleons that take place before the absorption of the photon are called initial state
interactions. Non-perturbative approaches use eigenstates of the nuclear Hamiltonian
as initial and final states, and treat only the interaction of the external photon, real
or virtual, as a weak perturbation. The nuclear eigenstates contain all the effects of



83

nuclear forces including those of the EM interaction between nucleons in the nucleus.

• Photo-meson (PM) currents: In the process illustrated in diagram (2.PM) the
photon produces a meson by hitting a nucleon. The meson is virtual, and has to be
absorbed by an other nucleon in all low-energy processes and most electron-nucleus
interactions. We denote currents associated with such processes by jPM

2 (ij).

• Meson currents (MC): The photon can be absorbed by the current of a charged
meson being exchanged by nucleons i and j as in diagram (2.MC). The mesons are
virtual, and the the associated two-nucleon currents are denoted by jMC

2 (ij).

• Nucleon excitation (NE) currents: In these processes, illustrated by diagram
(2.NE), the photon excites the nucleon it hits. The most common excitation is from
N to ∆. The excited nucleon de-excites by emitting or absorbing a virtual meson
absorbed or emitted by an other nucleon. We denote these currents by jNE

2 (ij).

• Meson excitation (ME) currents: The photon can excite a pion, or any other
meson being exchanged by nucleons i and j to an other mesonic state such as ω or ρ.
Such processes, shown in diagram (2.ME), generate the jME

2 (ij) currents.

Two-body currents: These include all possible two-nucleon currents, and are denoted by
j2(ij). According to the above classification:

j2(ij) = jPM
2 (ij) + jMC

2 (ij) + jNE
2 (ij) + jME

2 (ij) . (5.2)

Three-body currents: All the processes that contribute to two-body currents can as well
contribute to three-body currents. The three-body analogues of photo-meson and meson
excitation currents are illustrated in diagrams (3.PM) and (3.ME) of Fig. 5.1. The total
three-body current is denoted by j3(ijk).

Full current operator: The total EM current of the nucleus is expanded as:

j =
∑

1≤i≤A

j1(i) +
∑

1≤i<j≤A

j2(ij) +
∑

1≤i<j<k≤A

j3(ijk) + . . . . (5.3)

An n-body current allows the photon momentum to be shared by n nucleons. When the
photon has small momentum, the above series converges rapidly with the j1 current giving the
dominant contribution. However, there are interesting exceptions. For example, when j1 is
suppressed by symmetry requirements, then the j2(ij) current gives the leading contribution.
A classic example of these effects is provided by the thermal neutron capture cross sections
by deuterons and 3He nuclei.

In contrast, when the photon momentum is large, the two-body currents can give large
contributions to the elastic electron-nucleus scattering, exceeding those of j1. In this case it
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Figure 5.2: One of the Feynman diagrams contributing to the charge exchange interaction
between two nucleons.

is simpler to keep the nucleus bound when the large momentum transfer is divided among
the two nucleons, than when given to only one.

The dominant pair current occurs when a proton (neutron) i at ri changes into a neutron
(proton) by a charge-exchange interaction with a neutron (proton) j at rj as illustrated in
Fig. 5.2. It is necessary if the current carried by protons in nuclei is to be conserved. Since
the charge exchange interaction is mediated by the two-nucleon interaction vij , the pair
current j2(ij) depends on it. Parts of the three-body current are related the three-nucleon
interaction Vijk. Since 〈Vijk〉 ≪ 〈vij〉 in light nuclei and presumably in nuclear matter too,
the contributions of j3(ijk) may be expected to be smaller than those of j2(ij). At present
n-body interactions and currents with n ≥ 4 are neglected in most approaches.

The continuity equation provides a complicated relation between the two- and three-
nucleon interactions and the corresponding currents. This relation is not sufficient to de-
termine the currents from the interactions. However, its validity provides a test of the
approximations used in their construction.

5.1 Nonrelativistic one-body current

The photon gives its momentum q to the nucleon that absorbs it. Therefore it is convenient
to consider the Fourier transform of the nuclear current density defined in Eq. (5.1),

j(q) =
∫
dx eiq·x j(x) . (5.4)

In classical physics, a charge e at position r leads to a charge density e δ(x−r). Therefore, for
point protons—their charge e > 0 has been factored out as in Eq. (5.1)—and point neutrons
of zero charge, the one-body charge operator ρc,1(q) reads

ρc,1(q) =
∑

1≤i≤A

eiq·ri
1 + τz,i

2
. (5.5)



5.1. NONRELATIVISTIC ONE-BODY CURRENT 85

It gives the interaction of a nucleus made up of point nucleons with an external Coulomb
field eiq·r. Including the effects of the finite size of the nucleons we obtain

ρc,1(q) =
∑

1≤i≤A

eiq·ri
[
Gp

E(q)
1 + τz,i

2
+Gn

E(q)
1− τz,i

2

]

=
∑

1≤i≤A

eiq·ri
1

2

[
GS

E(q) +GV
E(q) τz,i

]
, (5.6)

where the following isoscalar and isovector combinations of the nucleon Sachs form factors
discussed in Chapter 4 have been introduced

GS
E(q) = Gp

E(q) +Gn
E(q) , GV

E(q) = Gp
E(q)−Gn

E(q) , (5.7)

with the normalization GS
E(0) = GV

E(0) = 1.

Classically, a moving charge of mass m produces a convection current density given by
δ(x − r)p/m, where r is the position of the charge and p/m is its velocity. Therefore, in
quantum mechanics jc,1(q) is obtained as

jc,1(q) =
∑

1≤i≤A

1

4mN

{
eiq·ri , pi

} [
GS

E(q) +GV
E(q)τz,i

]
. (5.8)

The last term in the nonrelativistic j1 operator, denoted by jm,1, is from the magnetic moment
µ e/(2mN) of the nucleon. It interacts with the magnetic field B of the photon via

−µ e

2mN
σ ·B = −i µ e

2mN
σ × q ·A , (5.9)

corresponding to the current i (µ/2mN)σ×q after factoring out e. Taking into account the
difference in the magnetic moments of the proton and the neutron, we obtain

jm,1(q) =
∑

1≤i≤A

eiq·ri
i

4mN

σi × q
[
GS

M(q) +GV
M(q) τz,i

]
, (5.10)

where isoscalar and isovector magnetic Sachs form factors are defined as

GS
M(q) = Gp

M(q) +Gn
M(q) , GV

M(q) = Gp
M(q)−Gn

M(q) . (5.11)

These form factors at q = 0 are related to the proton and neutron magnetic moments via
Eqs. (4.6).
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5.2 Photo-pion current and charge operators

In the nonrelativistic limit the coupling of a charged pion to the nucleon involves a gradient
operator, see Eq. (3.10). By minimal substitution in the terms of HπNN involving absorption
or emission of charged pions, we find

−fπNN

mπ
σ · [∇± iA(r)] φ̂±(r) τ∓ , (5.12)

where the charged pion fields are as defined in Eq. (3.3) and use has been made of Eq. (3.7)
for φ̂(r) · τ . The upper and lower signs are for the positive and negative pion fields φ̂+ and
φ̂−, respectively. Neutral pions cannot be photo-produced in first order of fπNN . However,
they can be produced in higher order by charge exchange πN scattering, for example via
γ + n→ ∆0 → n+ π0. We will neglect here these higher order contributions and derive the
photo-pion current jPM

2 (ij) in the leading order proportional to f 2
πNN .

The photo-pion currents come from the term containing A in Hamiltonian (5.12), which
can be written as

−i fπNN

mπ

σ ·A(r)
[
φ̂+(r) τ− − φ̂−(r) τ+

]
=
fπNN

mπ

σ ·A(r) ǫabz τa φ̂b(r) , (5.13)

where a and b denote components x, y, and z in isospin space, and a sum over repeated
indices is understood. In the interaction shown in diagram (2.PM) of Fig. 5.1 the photo-
pion is produced by nucleon i. A part of the photon momentum, denoted by ki is taken by
nucleon i, and kj by nucleon j. We must have

q = ki + kj . (5.14)

The calculation of this interaction proceeds as that of vπij given in Sec. 3.2. However, the
current is derived in the static limit, i.e. neglecting the nucleon kinetic energies as well as
the energy ωq injected by the external EM field. Equation (5.1) is then used to identify the
photo-pion current off nucleon i, which (in momentum space) reads

jPM,π
i (ki,kj) = −i f

2
πNN

m2
π

(τ i × τ j)z
1

m2
π + k2j

σi σj · kj . (5.15)

The 〈i(τ i×τ j)z〉 = 1 when initially the nucleons i and j are respectively proton and neutron
and finally they become neutron and proton. In this case the current flows from i to j. When
i, j are initially n, p and become p, n, the 〈i(τ i×τ j)z〉 = −1 and the current flows from j to i.

The 〈i(τ i× τ j)z〉 = 0 when there is no charge exchanged between i and j. The jPM,π
j (ki,kj)

current has a similar expression with i ⇀↽ j. Combining both we get the total photo-pion
current as

jPM,π
2 (ki,kj) = −i f

2
πNN

m2
π

(τ i × τ j)z

(
1

m2
π + k2j

σi σj · kj −
1

m2
π + k2i

σj σi · ki

)
, (5.16)
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for point nucleons and pions. Our derivation of photo-pion current ignores the finite size
effects on the coupling of the photon to the nucleon, and gives the above equations without
the isovector nucleon electric form factor GV

E(q). At small values of q the GV
E(q) → 1, and

the equation for the current is exact. At larger value of q it is important to include GV
E(q)

to satisfy current conservation as discussed in Sec. 5.4.
The one pion exchange also contributes to a coupling of the scalar potential φ0(r) to the

nucleon via the interaction Hamiltonian given by

− 1

2mN

fπNN

mπ

[
τ · φ̂(r) + φ̂z(r)

]
σ ·∇φ0(r) . (5.17)

It vanishes in the static limit (mN → ∞), and can be regarded as a relativistic correction. A
similar analysis to that carried out above for the one pion-exchange two-body current leads
to a corresponding charge operator (for point nucleon and pions) of the form

ρPM,π
c,2 (ki,kj) =

1

2mN

f 2
πNN

m2
π

[
(τi · τj + τz,j)

1

m2
π + k2j

σi · q σj · kj

+ (τi · τj + τz,i)
1

m2
π + k2i

σi · ki σj · q
]
. (5.18)

Finite size effects on the nucleon-photon coupling are accounted for by multiplying the
isoscalar part proportional to τi · τj by GS

E(q) and the isovector part proportional to τz,i or
τz,j by G

V
E(q). This operator gives important contributions to the longitudinal form factors

of light nuclei, in particular to the deuteron A structure function and tensor polarization
observable, and 3He/3H and 4He charge form factors, measured in elastic electron scattering
at low and moderate values of the momentum transfer.

The two-body operators in Eqs. (5.16) and (5.18) are in momentum space, and coordinate-
space expressions follow from

jPM,π
2 (q; ij) =

∫
dki

(2π)3
dkj

(2π)3
eiki·ri eikj ·rj (2π)3 δ(ki + kj − q) jPM,π

2 (ki,kj) , (5.19)

and similarly for ρPM,π
c,2 (q; ij).

5.3 Pion current and charge operators

Half of the time ordered diagrams that contribute to the pion current are shown in Fig. 5.3.
In all of them nucleon i gets momentum ki, and the rest is taken by nucleon j. The pions
interact with nucleons i and j respectively with the φ̂+ and φ̂− field operators, and convert
them from p, n to n, p. In the remaining six processes, not shown in Fig. 5.3, i and j are
converted from n, p to p, n.
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Figure 5.3: Time ordered diagrams contributing to the π-meson current. See caption of
Fig. 5.1 for notation.

The coupling of the charged pion field to the EM field is given by minimal substitution
in the pion kinetic energy density

1

2

[
∇φ̂x ·∇φ̂x +∇φ̂y ·∇φ̂y

]
= ∇φ̂+ ·∇φ̂− → (∇− iA)φ̂− · (∇+ iA)φ̂+ , (5.20)

which leads to the following γππ interaction

−ǫabz
∫
d3rA(r) ·

[
∇φ̂a(r)

]
φ̂b(r) (5.21)

and to the corresponding vertex

i
ǫabz√
4ωkiωkj

A · (ki − kj) (5.22)

in all the six diagrams of Fig. 5.3, where the pions have momenta ki and kj and isospin
components a and b, respectively. The pion-nucleon vertices in these six diagrams give an
additional factor of

−f
2
πNN

m2
π

1
√
4ωkiωkj

τa,i τb,j σi · ki σj · kj . (5.23)
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In the above equations ωk =
√
m2

π + k2 is the free pion energy and form factors have been
included at the pion-nucleon vertices to account for finite size effects.

In time ordered perturbation theory, neglecting nucleon kinetic energies and the energy
ωq injected by the external EM field, the diagrams (a) and (b) have a factor 1/(ωki ωkj) from
the two energy denominators, while (c) and (f), and (d) and (e), have respectively

1

(ωki + ωkj)ωkj

and
1

(ωki + ωkj)ωki

. (5.24)

Adding the contributions of all the six diagrams, we obtain the pion current

jMC,π
2 (ki,kj) = i

f 2
πNN

m2
π

GV
E(q) (τ i × τ j)z (ki − kj)

σi · ki σj · kj

(m2
π + k2i )(m

2
π + k2j )

, (5.25)

where inclusion of the isovector electric form factor of the nucleon ensures that jPM,π
2 + jMC,π

2

is conserved, as discussed in the next section.

Figure 5.4: Some of the time ordered diagrams contributing to the π-meson charge operator.
See caption of Fig. 5.1 for notation.

There is also a coupling of the pion field to the scalar potential φ0 which leads to the
following vertex

−i ǫabz√
4ωkiωkj

φ0 (ωki − ωkj) (5.26)

for emission of pions with momenta ki and kj , energies ωki and ωkj , and isospin components
a and b, respectively. In the static limit, in which the external field energy and the nucleon
kinetic energies are neglected, we find that, after summing over the six possible time order-
ings, the two-body pion charge operator vanishes. However, a careful analysis of non-static
corrections of the diagrams in Fig. 5.3 as well as of those in Fig. 5.4 leads to the operator
(for point nucleons and pions)

ρMC,π
c,2 (ki,kj) =

i

mN

f 2
πNN

m2
π

(τi × τj)z

[
σi · ki σj · kj

(m2
π + k2i ) (m

2
π + k2j )

ki ·Ki

−σi · kj σj · kj

(m2
π + k 2

j )
2

kj ·Kj

]
+ (i ⇀↽ j) , (5.27)
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where the momentum Ki = pi + ki/2 referring to diagram (2.MC) in Fig. 5.1. We should
note that the operator ρMC,π

2 (ki,kj) above corresponds to a specific choice of non-static cor-
rections to the one pion-exchange potential. Different choices for these, otherwise arbitrary,
corrections lead to different charge operators ρMC,π

2 (ki,kj). However, it can be shown that
the different (non-static) one pion-exchange potentials and corresponding charge operators
are related to each other by a unitary transformation. Therefore, their lack of uniqueness
has no consequence on the predictions of physical observables.

5.4 Charge conservation

The total charge operator is given by

∫
dx ρc(x) = ρc(q = 0)

= ρc,1(q = 0) + ρc,2(q = 0) + ρc,3(q = 0) + . . . , (5.28)

where ρc,n(q = 0) are the one-body, two-body, three-body, and so on, charge operators,
defined in Eq. (5.3). In a nucleus AZ (with Z protons), (global) charge conservation demands
that

〈AZ |
∫
dx ρc(x) |AZ〉 = Z , (5.29)

in units of the proton charge e. This condition is satisfied by ρc,1(q = 0), since

ρc,1(q = 0) =
∑

i

1 + τz,i
2

and 〈AZ |ρc,1(q = 0) |AZ〉 = Z . (5.30)

Therefore it follows that

〈AZ |ρc,2(q = 0) + ρc,3(q = 0) + . . . |AZ〉 = 0 . (5.31)

The photo-pion charge operator in Eq. (5.18) obviously satisfies this requirement, since it
vanishes at q = 0. It is also satisfied by the pion charge operator in Eq. (5.27), since q = 0
implies ki = −kj , and hence ρMC,π

c,2 (ki,−ki) = 0.
Locally charge conservation requires

∇ · j(x) + ∂ρc(x)

∂t
= 0 , (5.32)

where the time derivative of the Schrödinger picture operator ρc(x) is defined as

∂ρc(x)

∂t
≡ i [H , ρc(x)] , (5.33)
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and H is the nuclear Hamiltonian. In terms of the Fourier transforms j(q) and ρc(q) local
charge conservation then implies

q · j(q) = [H , ρc(q)] , (5.34)

which establishes a complicated relation between many-body interactions and currents. It
is interesting to show that it is satisfied for the photo-pion and pion currents derived in the
previous sections. To lowest order in 1/mN , Eq. (5.34) separates into

q · j1(q; i) =
[

p2
i

2mN

, ρc,1(q; i)

]
, (5.35)

q ·
[
jPM,π
2 (q; ij) + jMC,π

2 (q; ij)
]
=
[
vπij , ρc,1(q; i) + ρc,1(q; j)

]
, (5.36)

where vπij ≡ vπij τi · τj is the one pion-exchange potential. By evaluating the commutators on
the r.h.s. of the above equations, we easily find

[
p2
i

2mN
, ρc,1(q; i)

]
=

1

4mN

(
eiq·ri q · pi + pi · q eiq·ri

) [
GS

E(q) +GV
E(q)τz,i

]
, (5.37)

[
vπij , ρc,1(q; i) + ρc,1(q; j)

]
= i GV

E(q)(τi × τj)z v
π
ij

(
eiq·ri − eiq·rj

)
. (5.38)

Equation (5.35) is obviously satisfied by jc,1(q; i) in Eq. (5.8), while q · jm,1(q; i) in Eq. (5.10)
vanishes identically. The l.h.s. of Eq. (5.36) gives

l.h.s =−i GV
E(q)

f 2
πNN

m2
π

(τ i × τ j)z

∫
dki

(2π)3
dkj

(2π)3
eiki·ri eikj ·rj (2π)3 δ(ki + kj − q)

[
(ki + kj) · σi σj · kj

m2
π + k2j

− (ki + kj) · σj σi · ki

m2
π + k2i

− k2i − k2j
(m2

π + k2i )(m
2
π + k2j )

σi · ki σj · kj

]

and the last term in the square bracket can be written as

− k2i − k2j
(m2

π + k2i )(m
2
π + k2j )

=
1

m2
π + k2i

− 1

m2
π + k2j

.

Combining terms and carrying out the integrations over ki and kj , the r.h.s. of Eq. (5.38)
is obtained.

The finite size effects in HπNN are included via vertex factors FπNN(k) as discussed in
Sec. 3.17. Including these, the one pion-exchange potential is as given in Eq. (3.203). These
finite size effects can be accounted for in the photo-pion and pion currents by defining

jPM,π
2 (ki,kj) = −i GV

E(q)
f 2
πNN

m2
π

(τ i × τ j)z

[
F 2
πNN(kj)

m2
π + k2j

σi σj · kj −
F 2
πNN(ki)

m2
π + k2i

σj σi · ki

]
,

(5.39)
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jMC,π
2 (ki,kj) = i

f 2
πNN

m2
π

GV
E(q) (τ i × τ j)z

ki − kj

k2i − k2j
σi · ki σj · kj

[
F 2
πNN(kj)

m2
π + k2j

− F 2
πNN(ki)

m2
π + k2i

]
.

(5.40)
These currents are conserved. However, in this context it is worthwhile noting that the
relation Eq. (5.34) constrains only the longitudinal (along q) component of the current. In
the case of the photo-pion and pion currents above, in particular, this constraint imposes
that the nucleon electromagnetic form factor GV

E(q) be used in their longitudinal components.
However, it poses no restrictions on their transverse components. Ignoring this ambiguity, the
choice in Eqs. (5.39) and (5.40) satisfies the “minimal” requirement of current conservation.

5.5 The nucleon excitation currents

The N ⇀↽ ∆ transition currents are believed to be the leading currents due to the excitation
of nucleons by the photon. In the quark model, the spins of valance quarks are coupled to a
total spin 1/2 and 3/2 in the N and ∆ states respectively. The photon can flip the spin of a
quark by a magnetic dipole transition and convert N ⇀↽ ∆. This leads to the γN∆ coupling

HγN∆ = −µγN∆

2mN

[
Tz S×∇+ T †

z S
† ×∇

]
·A , (5.41)

where S and T are respectively N → ∆ transition spin and isospin. This coupling is a
generalization of the −µσ · B dipole coupling of the spin to the magnetic field, and can
be derived from the quark model. The first term gives the N → ∆ transition and the
second ∆ → N . Due to charge conservation in electromagnetic transitions, the HγN∆ can
depend only on Tz. There can also be an electric quadrupole transition between the N and
∆ states. However, this coupling is very weak compared to the magnetic dipole, and we will
not consider its effects.
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Figure 5.5: Two of diagrams contributing to the N∆ excitation current. See caption of
Fig. 5.1 for notation

The value of the transition magnetic moment µγN∆ obtained from the analysis of γN
scattering data in the ∆ resonance region is ≃ 3 in units of nuclear magnetons. It is about
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30% smaller than that predicted by the quark model. The nucleon magnetic current in
Eq. (5.10) has an isoscalar term proportional to the isoscalar magnetic form factor GS

M(q).
However, isoscalar terms cannot convert a nucleon to ∆ and are absent in HγN∆. The N to
∆ current then follows from Eq. (5.41) as

ji,N→∆(q) = i
µγN∆

2mN
Tz,i Si × q eiq·ri , (5.42)

while the ∆ to N current is obtained from the expression above by replacing Tz,i and Si by
the corresponding adjoint operators.

The main processes contributing to the N ⇀↽ ∆ transition current are shown in Fig. 5.5,
and can be estimated in perturbation theory by using the one pion-exchange transition
potentials derived in Sec. 3.11. By neglecting kinetic energies in the intermediate states, we
obtain in coordinate space

jNE,∆
2 (q; ij) = [vNN→∆N(rij)]

† 1

mN −m∆
ji,N→∆(q)

+ ji,∆→N(q)
1

mN −m∆

vNN→∆N(rij) + (i ⇀↽ j) . (5.43)

The first (second) term is from the excitation of nucleon i (j). The current above is obviously
transverse q·jNE,∆

2 (q; ij) = 0. It can be expressed in terms of Pauli spin and isospin matrices
by making of use of the identities in Eqs. (3.73)–(3.75) satisfied by the spin and isospin
transition operators.

The current in Eq. (5.43) is generally overestimated by the above lowest order perturba-
tion theory calculation. It is due to the admixtures of components with nucleons excited to
∆ resonances in nuclear wave functions. The diagram (a) in Fig. 5.5, for example, shows a
photon induced transition between the component in the initial state in which i is a nucleon
to that in the final state in which i is a ∆. In contrast, in diagram (b) i is a ∆ in the initial
state. The amplitudes of processes due to the γN∆ coupling can be more accurately calcu-
lated using non perturbative approximations for nuclear wave functions with ∆ components.
The simpler two-nucleon problem is discussed below, and the method has been generalized
to light nuclei.

We can consider a Hamiltonian containing nucleon and ∆ degrees of freedom. It has the
general form

HN+∆ =
∑

i

(m∆ −mN )Pi∆ −
∑

i

(
1

2m
Pi N +

1

2m∆
Pi∆

)
∇2

i

+
∑

i<j

∑

B1,B2=N,∆

∑

B′
1
,B′

2
=N,∆

vB1B2→B′
1
B′

2
(ij) , (5.44)

where Pi N and Pi∆ are N and ∆ projection operators, and vB1B2→B′
1
B′

2
(ij) are transition

potentials when B1B2 6= B′
1B

′
2. Excluding isospin symmetry breaking terms, a minimum of
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Figure 5.6: The solid lines give the wave functions of all the NN and ∆∆ channels in the
deuteron obtained by solving the Schrödinger equation with the Hamiltonian (5.44). The
dashed lines are obtained with the correlation operator (5.49).

28 operators is needed to describe all the vB1B2→B′
1
B′

2
. These v28 models are also successful

in explaining the NN elastic scattering data up to 350 MeV in laboratory. Since the ∆ has
isospin 3/2, the T = 0 np states can mix with only the ∆∆ states. For example, including
the N and ∆ degrees of freedom, the deuteron has six coupled channels:

(3S1)NN , (
3D1)NN , (

3S1)∆∆, (
7D1)∆∆, (

3D1)∆∆, and (7G1)∆∆ . (5.45)

The T = 1 pp or np or nn states have admixtures of N∆ +∆N and ∆∆ channels, and the
important T = 1, Jπ = 0+ state has four coupled channels:

(1S0)NN , (
5D0)N∆+∆N , (

1S0)∆∆, and (5D0)∆∆ . (5.46)

The wave functions of channels having ∆’s decay asymptotically as r → ∞, and at positive
energy only the NN channel goes out to infinity. The v28 wave functions for the deuteron
and the T = 1, Jπ = 0+, E = 1 MeV state are shown in Fig. 5.6 and 5.7.
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Figure 5.7: The solid lines give the wave functions of all the NN , N∆ + ∆N and ∆∆
channels in the T = 1, Jπ = 0+ state at E = 1 MeV, obtained by solving the Schrödinger
equation with the Hamiltonian (5.44). The dashed lines are obtained with the correlation
operator (5.49).

Let ΨNN(ij) be the wave function which contains only the nucleon degrees of freedom,
and Ψ(ij) be the full wave function. The Ψ(ij) → ΨNN(ij) as r → ∞. In bound states like
the deuteron and nuclei, the norm of ΨNN is less than unit if Ψ is normalized to unity. We
can generally define a transition correlation operator UTR

ij such that

Ψ =
[
1 + UTR(ij)

]
ΨNN (ij) . (5.47)

In the first order perturbation theory used to obtain Eq. (5.43) for the current jNE,∆
2 (q; ij),

the transition correlation operator is approximated as follows

UTR
PT (ij) = −vNN→N∆(ij) + vNN→∆N(ij)

m∆ −m
− vNN→∆∆(ij)

2 (m∆ −m)
, (5.48)

in an obvious notation. This approximation is not good at r ≃ 1 fm, where the wave functions
with ∆’s peak, see Figs. 5.6 and 5.7. In this region the wave functions are influenced by the
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repulsive core in the diagonal B1B2 → B1B2 interactions, and the kinetic energies of the
channels with ∆’s are significant. The above approximation overestimates the amplitudes of
some channels with ∆’s by factors of order two.

However, a simple and good approximation can be obtained for UTR, since in the nuclear
energy domain it does not depend too much on the energy and angular momentum of the
interacting nucleons. In fact the operator

UTR(ij) = uσII(rij) (σi · Sj τ i ·Tj + Si · σj Ti · τ j) + uσIII(rij)Si · Sj Ti ·Tj

+ utII(rij)
(
SII
ji τ i ·Tj + SII

ij Ti · τ j

)
+ utIII(rij)S

III
ij Ti ·Tj , (5.49)

gives wave functions of channels with ∆’s that are very close to the exact solutions of the
two-body Schrödinger equation with the v28 potential, as can be seen from Figs. 5.6 and 5.7.
Note that the above UTR contains the operators in the transition potentials in Eqs. (3.102)
and (3.110). The approximate ΨNN is calculated from an NN interaction that has the same
form as the vNN→NN in the v28, but its strength parameters are readjusted to make it phase
equivalent to v28. The functions uσII(r), uσIII(r), utII(r) and utIII(r) are extracted from
the solutions of the v28 Schrödinger equation. The N ⇀↽ ∆ transition current can be easily
calculated from the full Ψ given by Eq. (5.47).

5.6 Relativistic one-nucleon current

The relativistic expression for the current of a point charge particle like an electron is given
by

jµ(x) = Qψ(x) γµ ψ(x) , (5.50)

〈p′, χ′ | jµ(x) | p, χ〉 = Q ei q·x u(p′, χ′) γµ u(p, χ) . (5.51)

In the equation for jµ, Q is the charge of the particle and ψ and ψ are field operators. In
the matrix element of jµ the p and p′ are the initial and final momenta, q is the momentum
transfer q = p′ − p, and χ and χ′ are the initial and final spin states. We can easily verify
that in the nonrelativistic limit the above current gives the charge density and convection
current as in Eqs. (5.5) and (5.8), however, the magnetic moment current in Eq. (5.10) has
the Dirac magnetic moments, e/(2mp) for the proton and zero for the neutron. Thus the
above equations are not useful for composite objects like the nucleons.

The most general expression for the vector current of a spin half particle is

〈p′, χ′ | jµ(x) | p, χ〉 = ei q·x u(p′, χ′)
[
F1(q

2) γµ + i F2(q
2) σµν qν + F3(q

2) qµ
]
u(p, χ) , (5.52)

where σµν is the antisymmetric tensor defined in terms of γ matrices as σµν = (i/2) [γµ , γν ].
The matrix element of the current depends on the momentum p and the momentum transfer
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q or equivalently on p′, and for free particles p2 = p′ 2 = m2, where m is the particle mass.
In the case of interacting particles p2 and p′ 2 can be different from m2. The electromagnetic
current is conserved, and therefore

∂

∂xµ
jµ(x) = 0 , (5.53)

which leads to the following condition

u(p′, χ′)
[
F1(q

2) qµ γ
µ + i F2(q

2) σµν qµ qν + F3(q
2) q2

]
u(p, χ) . (5.54)

The qµγ
µ term is zero since the spinors u and u satisfy the (free-paricle) Dirac equation, and

the qνqµ term is also zero because the tensor σµν is antisymmetric. Therefore the F3(q
2) = 0.

Taking the nonrelativistic limit of the Eq. (5.52) we obtain

F1(q
2 → 0) = Q , F2(q

2 → 0) = (µ− 1)
Q

2m
, (5.55)

where µQ/(2m) the magnetic moment of the particle. The form factors at finite values of
q2 are not constrained by the values of Q and the magnetic moment.

The nucleon currents are divided into isoscalar and isovector parts using (1 ± τz)/2
projection operators for the proton and the neutron, as in Sec. 5.1. This gives

〈p′, χ′ | jµ(x)|p, χ〉 = ei q·x u(p′, χ′)

[
e γµ

1

2

[
F S
1 (q

2) + F V
1 (q2) τz

]

+ i
e

2mN
σµν qν

1

2

[
(µS−1)F S

2 (q
2) + (µV −1)F V

2 (q2) τz
] ]
u(p, χ) . (5.56)

Here χ and χ′ give the initial and final spin-isospin states of the nucleon, and the isoscalar
and isovector magnetic moments are defined as

µS = µp + µn ≃ 0.88 , µV = µp − µn ≃ 4.70 , (5.57)

in units of e/(2mN). Note that µS ≪ µV so that the F2 form factor associated with the
anomalous nucleon magnetic moments is dominantly isovector, and

F S
1 (q

2 → 0) = F S
2 (q

2 → 0) = F V
1 (q2 → 0) = F V

2 (q2 → 0) = 1 (5.58)

by construction.


