

Concept for an Ultra-Cold Neutron Facility with CW Beams at 2 GeV

Dr. Bradley J. Micklich Senior Physicist, Physics Division Argonne National Laboratory

Workshop on Applications of High-Intensity Proton Accelerators
Fermilab
19-21 October 2009

Ultra-Cold Neutrons

- Ultra-cold neutrons have a very specific definition
 - Velocity < 7 m/s
 - Energy less than about 200 neV
 - Wavelength longer than 600 Å
 - Can be reflected from materials, and thus contained in material 'bottles'
- Ultra-cold neutrons are used in basic physics research to study
 - Neutron electric dipole moment (nEDM) (nature of baryon asymmetry)
 - Existence of a nEDM implies processes that violate CP symmetry. The standard model includes CP-violating processes but puts the upper limit on nEDM of $|d_n| \sim 10^{-32}$ e-cm. The current lower experimental limit is about $|d_n| \sim 10^{-26}$ e-cm.
 - Neutron half-life (nucleosynthesis, cosmic abundance of ⁴He)
 - Neutron β -decay measurements (half-life and correlation coefficients) give information about the time scale for Big Bang nucleosynthesis and the cosmic abundance of ${}^4\text{He}$.
- UCNs can be produced by two means
 - Thermal production in a solid-D₂ moderator (PSI UCN source)
 - Superthermal production by downscattering of 8.9-Å neutrons in He-II (KEK UCN source)

Ultra-Cold Neutrons

- Accelerators have several advantages for UCN production
 - Lower heat level in the system per unit neutron flux
 - Fewer gammas per neutron less heating
- It is not clear which of the two methods of UCN production is 'better'
- Each one of the two methods is better for a particular class of experiments (nEDM vs. neutron lifetime)

Fundamental Nuclear Physics Beamline at SNS

- Fundamental Physics beamline views the bottom downstream moderator, which is the fully coupled hydrogen moderator
- UCNs produced by scattering 8.9-Å neutrons from a double monochromator and then downscattering in He-II
- This moderator has peak flux at about 4 Å
- For UCN production, would love to have a moderator optimized for production of 8.9-Å neutrons
- This is <u>not</u> a UCN source!!

- A portion of the proton beam from the PSI cyclotron (4-8 seconds out of 800 seconds) (590 MeV, 2.2 mA) will be used to produce UCNs.
- Duty cycle allows re-cooling of the converter between pulses, and is consistent with the short fill time and long observation time typical of UCN experiments
- Only takes 1% of proton beam from muon production targets and SINQ

PSI ACCELERATOR FACILITY

to UCN

 Beam from the cyclotrons used to pass through this area to the medical physics area, which is now served by a dedicated accelerator

Neutrons are produced in a canneloni-style target (lead inside Zircaloy tubes, 21 cm diameter and 55 cm long), and are then thermalized in an ambient-temperature heavy-water moderator

- The thermalized neutrons are further downscattered in a 30-liter volume of solid D_2 (50 cm diameter, 15 cm thick) cooled to 5 K
- Ultra-cold neutrons escape from the D₂ volume into a storage tank, from which they pass through guides to experimental areas

Ultra-Cold Neutrons - KEK (Japan)

- Neutrons produced by 200 nA of 392 MeV protons interacting in a 5-cm diameter,
 20-cm long PB target
- Neutrons are moderated in ambient D₂O and cryogenic D₂O moderators
- UCNs produced by downscattering of 8.9-Å neutrons in 0.5-K He-II

What Would A UCN Facility Look Like at FNAL?

- Assume existence of a 2-GeV CW linac with available power 500-700 kW
 - Somewhat less power than available at PSI (1 MW)
 - Initial estimate assumed same energy delivered to spallation target yields same UCN production use higher (2%) duty factor to compensate
 - At PSI, 1 MW for 4 seconds ~ 4 MJ; at 500 kW, same energy delivered in 8 seconds
 - Power upgrades at PSI don't lead to increased UCN production, must reduce duty cycle at higher powers to prevent melting of sD₂
 - Higher energy spreads out neutron production in target lower efficiency of UCN production?
- We are not thinking of a general-purpose neutron scattering facility (too expensive, and duplicative)
- Some results will also be presented for other proton energies

UCN Moderator Design Approach

- Volumetric heating (mW/cc) in the UCN production region is the limiting factor
- The temperature of the moderator will rise during a pulse, and the heat must be carried away between pulses
- Because nuclear heating (fast neutrons and gamma rays from the source) decreases exponentially with distance from the source region, while neutrons, in the absence of absorption, are preserved in slowing-down, we expect to find a large radius at which the heating is acceptable and the cold neutron flux is as large as possible
- The source power in this approach is an adjustable parameter, which is a departure from convention in neutron facility design (we assume that we can take whatever fraction of the 500-700 kW we need, as long as it is not too large)
- The parameter to be optimized is the ratio of UCN production to nuclear heating in the moderator – this ratio improves with distance from the source, but at the sacrifice of ratio of cold neutron flux to source power

UCN Moderator Design Approach

- Perhaps the moderator physical form could be solid pellets cooled by superfluid helium
- Production of large quantities of mm-scale, solid pellets (CO_2 , CH_4 , NH_3 , D_2 , ...) is an established technology. The same technology should be applicable to D_2O , which would produce low-density amorphous (LDA) ice

Moderator Cooling

- Can the heat be removed from the pellets without excessive temperature rise?
 - Rate of heat diffusion through pellet determined by size and thermal diffusivity $\alpha = k/\rho C_p$
 - Heat transfer into coolant determined by Kapitza resistance (mismatch of phonon spectra in moderator and coolant)
 - Enthalpy of He II between 1.8 K and 2.17 K is about 300 mJ/cm³ can absorb about 100 mJ/cm³ (170 mJ/cm³ of moderator)
 - Deposited energy must be removed before next pulse
- Preliminary heat transfer calculations in the liquid helium show that the heat conduction through the helium may be more of a limiting factor than the Kapitza resistance at the pellet surface (S. Van Sciver, Florida St.)
- Energy deposition may be limited by heat conduction to about 50 mW/cc

Summary of MCNPX Calculations for VCN/UCN Production

- Argonne studied concepts for a source of Very Cold Neutrons, for which the technology is very similar to that for UCN production
- A number of MCNPX simulations for a VCN source have applicability to UCNs
- Protons incident on bare target neutron production and leakage vs. proton energy, target material
 - What proton energy and target material will maximize neutron yield?
- Target in heavy water moderator/reflector determine best location for cold moderator
 - How do changes in the neutron production affect the neutron flux out in the moderator?
- Cold moderator inside heavy water moderator/reflector long wavelength neutron emission vs. proton energy
 - How might selected proton beam energies affect UCN production?

Neutron Production from Spallation

- Optimum energy at or just above 1 GeV
- Calculations for higher energies, extrapolation to lower energies

T. A. Gabriel et al.	., ANL-HEP-PR-93-69
----------------------	---------------------

E _p (GeV)	F _h	I ₁ (mA)	I _n (mA)
1	1.0	1.0	1.0
2	0.97	0.5	0.515
3	0.94	0.333	0.353
5	0.89	0.2	0.224
8	0.84	0.125	0.149
10	0.815	0.1	0.123
20	0.72	0.05	0.0695

I₁: current for 1 MW power

I_n: current for constant neutron production

MCNPX Model - Target Neutron Production

- Proton energy varied from 0.75 to 10 GeV
- Lead target diameter 20 cm, length 200 cm; beam diameter 15 cm
- Color gradient the same for all proton energies

Neutron Leakage Current vs. Incident Proton Energy

 At higher proton energies, peak neutron emission is lower, broader, and shifted downstream

Neutron Production Efficiency vs. Incident Proton Energy

- Lead target diameter 20 cm, length 200 cm; beam diameter 15 cm
- Results consistent with measurements (geometry dependent)

MCNPX Model - Target Neutron Production

- Considered lead, tungsten, mercury as target materials
- About the same neutron production in all three
- Color gradient the same for all proton energies

Neutron Leakage Current vs. Target Material

 For roughly constant Z, higher density leads to greater peak neutron emission which is narrower and shifted upstream

MCNPX Model - Moderator Neutron Flux Profile

- Lead target, proton energy varied from 0.75 to 10 GeV
- Calculate thermal neutron flux in liquid D₂O moderator/reflector

This thermal flux is the 'source' for UCN production

Neutron Thermal Flux vs. Accelerator Energy

MCNPX Calculations for Cold Moderator

- For a given size of beam and target, vary cold moderator position (move further away)
- Calculate energy spectrum of neutrons emitted from surface of cold moderator
- Calculations use scattering kernel for liquid D₂ at 20 K

Modeling Results - Neutron Emission Spectra

Premoderator thickness d varied from 5 to 30 cm (R_{target} = 10 cm)

Modeling Results - Neutron Intensity (λ ≥ 10 Å)

Premoderator thickness varied from 5 to 30 cm (R_{target} = 10 cm)

Summary

- Accelerators have many desirable qualities for UCN production
 - Relatively low heating compared to reactors, favorable duty cycle possible
- UCN production will be limited by energy deposition in the moderator
- We can treat the accelerator power as an adjustable parameter
- The ratio of UCN flux to volumetric heating improves at larger distances from the spallation target
- Some serious study would be needed to determine whether UCN production at FNAL is viable
- Everything depends on the science case what would this bring to the table that would be new – there are currently four nEDM experiments being planned (Greene)
- Need to take advantage of parasitic beam no one will build an accelerator for UCN production alone
- How high can we push the UCN production?

