

MICE Cavity Instrumentation

Peter Lane
Illinois Institute of Technology

MAP Winter Meeting
December 6th, 2014
SLAC, Menlo Park CA, USA

What's in there?

- Part I: Instrumentation List and Photos
- Part II: Non-Acoustic Instrumentation Signal Data
- Part III: Acoustic Instrumentation Signal Data

Part I

Instrumentation List and Photos

Cooling Water Lines

- Pressure
- Temperature
- Flow rate

Vacuum

- Hot Cathode Gauge (HCG)
 - Cavity through top hat
 - Cavity at bottom port
 - Vacuum vessel
 - Left and Right RF couplers
 - Wall manifold
- Vessel Full Range Gauge (FRG)
- Left/Right Coupler Cold Cathode Gauges (CCG)
- Wall manifold Pirani gauge

Coupler and Vessel Gauges

Wall Manifold Gauges

RF System

- Cavity field through top hat.
- Forward/Reflected power on couplers
- Coupler light through view port windows.
- Coupler electron current
- Coax air pressure
- Tuner Push/pull pressure

Coupler RF Pickups

Radiation

- Breakdown light in cavity through top hat.
- Plastic scintillators + PMT (X-ray rate)
- Nal crystal scintillator + PMT (X-ray spectrum)
- "Chipmunk" ionization chamber detector (X-ray dose rate)

X-Ray Detectors

Temperature

- Thermocouples
 - 12 on cavity body
 - 1 on vessel cylinder
 - 2 on cover plates

Acoustics

- 24 piezo microphones on cavity body
 - For localization of breakdown.

Cavity Body Instrumentation

Thermocouples

Microphones

Various Vessel Feed-Throughs

Cavity HCG

Breakdown **Light Fibers**

Cavity RF Pickups

(five)

Part II

Non-Acoustic Instrumentation Signal Data

Normal RF Pulse Control Signals

Modulator Trip (False Spark) Control Signals

Cavity Breakdown Control Signals

Normal RF Pulse Radiation

Modulator Trip (False Spark) Radiation

Cavity Breakdown Radiation

Part III

Acoustic Signal Data

Cavity Breakdown Acoustics (RF Hammer + Spark)

RF Hammer Subtraction

- RF Hammer
 - Normal force on inner cavity walls due to the RF pulse
- Subtraction
 - Compute a rolling average of normal RF pulse signals
 - Subtract from spark signal
- Very effective on HPRF cavity signals, but...
 - HPRF acoustic wavefront is after the end of the RF pulse
 - 10x shorter RF pulse
 - HPRF spark dwarfed RF hammer (opposite case)

Cavity Breakdown Acoustics (Minus RF Hammer)

Making Sense of the Acoustics

- Larger energy capacity should mean louder sparks
 - Verify end-to-end functionality of mics and DAQ
- Test whether large noise is acoustic
 - Leave unadhered microphones in vacuum vessel
- More experience needed
 - Microphones going on the modular cavity soon
 - Will instrument the HPRF cavity again as well