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 FRIB beam dump context and challenges

 Thermo-mechanical material studies
• Simulations in support of the design

• (Prototyping and electron beam test)

 Radiation damage studies
• Low energy heavy ion irradiation

• Intermediate energy heavy ion irradiation

• High energy study

• Material microstructure study
» In-situ TEM study in different microstructure

» Low energy heavy ion irradiation

 Conclusion

Outline
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 World-leading heavy ion accelerator facility for rare isotope science
• Nuclear Structure

• Nuclear Astrophysics

• Fundamental Interactions

• Isotopes for Societal Needs

 Rare isotope production targets and beam dump 
compatible with beam power of 400 kW 
at 200 MeV/u for 238U 
(>200 MeV/u for lighter ions)

Facility for Rare Isotope Beams
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 Beam Dump requirements
• High power capability up to 325 kW

• 1 year (5500 h) lifetime desirable
» fluence ~1018 ion/cm²

» dpa (U beam) ~ 7 (dpa/rate ~ 4·10-7 dpa/s)

• Remote replacement and maintenance

 Water-filled rotating drum concept 
chosen for FRIB baseline
• Using water to stop the primary beam 

and absorb beam power

 Design parameters
• Ti-alloy shell thickness 0.5 mm to minimize power deposition in shell

• 600 rpm and 70 cm diameter to limit maximum temperature
and amplitude of temperature changes

• 60 gpm water flow to provide cooling and gas bubble removal

• 8 bar pressure inside the drum increases water boiling point to 150ºC

 Ti-6Al-4V was chosen as candidate material for the beam dump shell

Primary Beam Dump
Water-filled Rotating Drum Concept 
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 Extreme conditions due to heavy ion beams
• Energy loss of U beam at 156 MeV/u in Ti-alloy shell is 4 order 

of magnitude higher compare to proton beam at 1 GeV

 Challenges addressed in simulation
• High power – up to 60 kW in the shell

» Thermal stress 

» Water near the boiling point limits max. temperature 
of the shell

» Sufficient wall heat transfer required

• Rotating drum: 600 rpm
» Temperature variation 

• Fatigue, Stress wave through the drum shell

» Elevated mechanical stress due to internal pressure 

» Vibration and mechanical resonances

 Water
• Corrosion, Cavitation

 Swift heavy ions
• Radiation damage in material

• Sputtering

• Radiolysis (gas production)

Challenges Overview
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 Go forward with robust single shell beam dump
• Single shell geometry with single-phase fluid flow

• Maximum operation temperature limited by water 
boiling point

• Full power (325 kW) for light beams, up to 100 kW 
for the heaviest 238U beam

• Maximum tolerable heat flux of 0.35 MW/m² based 
on conservative assumptions

• Get operational experience during first years, 
assess heat removal from drum shell, learn about 
material behavior under heavy-ion irradiation at 
FRIB beam conditions, corrosion effects

 Continue to perform studies on heat removal 
and material behavior

Beam Dump for First Years of Operation
Robust Solution (Single Shell Drum)
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 Mechanical stress in the shell due to water pressure minimized
• Increased thickness of the top end plate at the 

channel area to reduce the stress and deformation

• Shell profile optimized to withstand high stress level

• Minimum safety factor of ~ 4 at 8 bar water pressure
near the shell  

 Thermo-mechanical stress
• Significantly lower than that induced by pressure (~ 80 MPa)

• Minimum safety factor of 3 for 8 bar pressure when beam close to the top 
and bottom plate

Simulation to support the design
Single Shell Drum Design Optimized
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 Irradiation induces material changes that could decrease the Beam Dump performance
• Thermo-mechanical properties (thermal conductivity, hardening, 

embrittlement), Electronic properties (resistivity), Structural 
properties (microstructure and dimensional changes), 
Sputtering

• Combined effects
» Thermal and radiation enhanced  creep, reduction of creep life

» Corrosion combined with radiolysis

» Gas production enhanced embrittlement

 Data exists for neutron and proton irradiation but no data 
were found for heavy ion irradiation in Ti-alloys
• Heavy ion induced radiation damage depends on two parameters

» Sn: nuclear energy loss (ballistic effect)

» Se: electronic energy loss (phase transformation, track formation and structural modification such 
amorphization)

 No heavy ion beam facility exists that allows us to test all extreme conditions combined 
together

 Perform studies that combine some material challenges using existing facilities 
• Electron beams, neutron beams, Swift Heavy Ion (SHI) beams

• Radiation damage, corrosion, creep

Radiation Damage in Material
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 Samples irradiated at IRRSUD (GANIL-CIMAP) up to a fluence of 1015 ions/cm² with 
• 36Ar beam @ 36 MeV 

» Se = 7.5 keV/nm – Sn = 0.015 keV/nm

• 131Xe beam @ 92 MeV
» Se = 20 keV/nm – Sn = 0.15 keV/nm

 FRIB conditions
• Se from 0.08 keV/nm (with O beam) to 12.6 keV/nm (with U beam)

• Sn from 2.5·10-5 keV/nm (with O beam) to 4·10-3 keV/nm (with U beam)

• ~7 dpa after one year of operation with U beam 

Material Study with Heavy Ion Irradiation 
at Low Energy [1]
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The SRIM-2013 calculation of the dose in a Ti-6Al-4V sample for the 
36Ar @ 36 MeV beam with a fluence of 1015 ions.cm-2



 X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron 
Microscopy (TEM), Electron Backscatter Diffraction (EBSD) analysis, Nano-
indentation, Vickers test done in collaboration with GANIL-CIMAP and MSU-CHEMS 
(MatX Strategic Partnership)
• No sign of track formation due to electronic excitations for any of the experimental 

conditions used (ions, species, energy or fluence) 

• No change in the microstructure, the crystallographic orientation or in hardness was observed. 

Material Study with Heavy Ion Irradiation 
at Low Energy [2]
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Nanoindentation Hardness of Ti-alloys, pristine and 

irradiated with 36Ar @ 36 MeV – T irr = 350°C –

fluence of 1015 ions/cm² 

BSE images and IPF maps before (a), (b) and after

irradiation at the same area (c), (d) in the Ti-6Al-4V sample

I-T3 irradiated with the 92 MeV 131Xe beam at T= 25ºC and

a fluence of 2.1014 ions.cm-2

Close to FRIB 

conditions

A. Amroussia et al., NIMB 365 (2015) 515-521



 Irradiation creep test was performed in June 2015 at GANIL-France
• Dose rate with 36S15+ at 12 MeV/u was representative for intermediate mass 

beams at FRIB

• Samples were irradiated with a fluence up to 4.61015 ions/cm²

Material Study with Heavy Ion Irradiation 
at Intermediate Energy [1]
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• Preliminary results, including irradiation-enhanced creep and thermal creep, 
show that a low value of creep was observed and are similar to “pure 
thermal” creep

• Challenge to obtain creep rate at lower temperature
» Sample heated by the beam deposition

» No active cooling possible without disturbing  creep measurement

Material Study with Heavy Ion Irradiation 
at Intermediate Energy [2]
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 Estimated earlier in the project for conditions more severe 
than present in FRIB dump (collaboration with GANIL-
CIMAP, M. Toulemonde)
• Electronic sputtering is negligible 

» Rate with U beam and drum shell at 600 C. 
(<200 C expected in reality)
• Ti~1·10-4 sputtered atoms / incident ions

• TiO2~1.5·10-2 sputtered atoms / incident ions

» Ti ~ 0.03 nm, TiO2 ~ 5 nm

• Nuclear sputtering estimated by SRIM code is negligible 
» Ti ~ 2 nm, TiO2 ~ 4.7 nm

 Calculated concentrations of the produced gases in the 
shell (H, He and tritium) during one year of operation are 
too small to significantly alter the Ti-6Al-4V properties
• H ~ 23 appm, He ~ 8 appm and Tritium ~ 1.2 appm with 

PHITS code
» Factor 2 less in gas production estimated with MARS15 code

Material Study with High Energy Heavy Ions
Sputtering Effect and Gas Production Negligible
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 3D printing (with Direct Metal Laser Sintered DMLS 
process) likely fabrication process for FRIB beam 
dump shell
• Microstructure of Ti-6Al-4V alloys may change due to 

fabrication process
» Characterization of different microstructures (Powder Metallurgy 

(PM) rolled, 3D printed (As received DMLS), 3D printed Hot 
Isostatic Pressure (HIP) (HIP-ed DMLS) ongoing

» 3D printed sample analysis shows lamellar microstructure

 The HIP (Hot Isostatic Pressure) was performed at a 
temperature of 900ºC at 102 MPa for 2 hours

 The powder used for DMLS samples is Grade 5 
Ti-6Al-4V

3D Printed Material for Beam Dump Drum
Which impact on material properties/behavior?
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 In-situ TEM irradiation was performed at the Intermediate Voltage 
Electron Microscopy (IVEM) - Tandem Facility at Argonne National 
Laboratory

 Kr2+ at 1 MeV at 350ºC

In-situ TEM with Heavy Ion Beam
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Image of the IVEM-Tandem facility at ANL.
Dose rate Vs depth of Kr ions in a Ti-6Al-4V target

SRIM-2013 calculation



 Fluence up to 1016 ions/cm² (~ 28 dpa) at 
~14 dpa/h 

 A preliminary analysis of the defect 
accumulation with in-situ TEM irradiation 
shows an accumulation of fine defects 
without recombination 
• In all irradiated samples, we observed fine 

nanometer size black spots indicative of 
defects formed due to radiation damage. 

• Initial dislocations and some features such 
as sub-grains observed in the un-irradiated 
microstructure disappeared after irradiation. 

• The PM-rolled sample irradiated up to a 
fluence of 1016 ions/cm² (~ 28 dpa) was 
bent heavily after irradiation.  The HIP-ed
sample irradiated to the same fluence
showed a better irradiation resistance.

In-situ TEM study with Low Energy 
Heavy Ion Irradiation
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 Low energy heavy ion irradiation at University Notre Dame to correlate 
mechanical properties of Ti-alloys with radiation damages observed 
during in-situ study at Argonne
• 4 different microstructures of Ti-alloy were irradiated under 3 irradiation 

conditions in  May 2016 
» at room temperature and at 350ºC

» Up to a fluence of 5·1016 ions/cm² (or 14 dpa)

» Two different dose rates (~14 dpa/h and 0.8 dpa/h)

Support for Beam Dump Drum Design 
Low Energy Heavy Ion
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 Post-irradiation characterization of TEM samples to identify defect 
(precipitates, dislocation loops) is planned at Argonne

 New in-situ TEM 
• at room temperature planned at Argonne next week (September 2016)

• at 150ºC approved at Orsay-JaNNUS (France) for test in 2017

 Low energy heavy ion irradiation at 150ºC was approved  at GANIL-
CIMAP 

 Correlation with mechanical behavior with irradiation of samples for 
nano-indentation testing at Notre Dame University (room temperature 
and 350ºC)

 Proton irradiation of Ti-6Al-4V with BLIP facility (BNL) samples under 
preparation with RaDIATE collaboration (February 2017)

 Corrosion effect will be investigated in collaboration with University of 
Michigan

 Mechanical tests at MSU on 3D printed Ti-6Al-4V to study orientation 
effect

Future work on Ti-6Al-4V
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 Beam Dump faces various thermo-physical-mechanical and chemical 
challenges 
• Some effects may be enhanced by the presence of the other 

» corrosion in presence of radiation, stress limit change in the presence of radiation

 Up to now no facility exists to study the impact from all effects 
combined together
• The changes of materiel have to be studied case-by-case experimentally

 Ti-6Al-4V confirmed as suitable material choice for the beam dump 
drum
• No radiation damage observed from several studies promises good radiation 

resistance of this alloy and gives confidence in lifetime

• Defect accumulation analysis ongoing

Conclusion
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FRIB construction area – August 29th 2016


