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Motivation and Overview

Quantum Coherence in Fenna-Matthews-Olson Complex

Quantum coherence in
photosynthetic light-harvesting
systems (e.g. FMO complex),
even at room temperature

Under what circumstances can
nature preserve quantum
coherence in macromolecules in
a wet and hot environment?

What, if any, is functional
purpose of quantum coherence
in natural systems?

General lessons?
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Motivation and Overview

FMO as Open Disordered System with Dephasing
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Motivation and Overview

Importance of Opening in FMO

Celardo et al (2012): Quantum
transport enhancement in FMO
depends strongly on opening (coupling
to reaction center, which serves as sink)

Peak quantum efficiency occurs near
superradiance transition (segregation
of decay widths due to opening)
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Quantum efficiency may
increase with T (up to a
point) – noise-assisted
transport (e.g Plenio &
Hulega, 2008)
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Motivation and Overview

Broader Perspective

Need systematic understanding of quantum transport
in situations where all of the following may
simultaneously be important:

1 Disorder
2 Opening
3 Finite temperature / decoherence

Work in single excitation regime – tight binding
models

Applications include quantum dot arrays and lattices,
J-aggregates, natural photosynthetic complexes,
artificial light-harvesting systems, bio-engineered
devices for photon sensing, quantum information
processing, ...
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Motivation and Overview

Questions Include:

Under what generic conditions can coherent effects
enhance transport in open quantum systems?

For which values of the opening strength are coherent
effects relevant?

When can a non-zero temperature (dephasing)
enhance quantum transport in open system?

How do system size and connectivity affect quantum
transport?
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Quantum Network – Tight Binding Model

Closed system described by single-excitation Hamiltonian

E.g. a linear chain

ωj ∈ [−W /2,W /2] ωN ω1  ω3 ωN-1 ω2

 Ω  Ω  Ω
Sink

Γtrap

Hsys =
N∑
j=1

ωj |j 〉 〈j |+ Ω
N−1∑
j=1

(|j 〉 〈j + 1 |+ |j + 1 〉 〈j |)

Opening up system gives rise to non-Hermitian effective Hamiltonian

Heff(E ) = Hsys − iQ(E )/2 + ∆(E )

Qj,k(E) = 2π
∑
c

Ac
j (E)Ac

k(E)∗ρc(E) ∆j,k(E) =
∑
c

P.V .

∫
dE ′

Ac
j (E ′)Ac

k(E ′)∗ρc(E ′)

E − E ′

Ac
j (E ) is coupling of site j to continuum channel c

ρc(E ) is continuum density of states
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Quantum Network – Incorporating Openness

Opening up system gives rise to non-Hermitian effective Hamiltonian

Heff(E ) = Hsys − iQ(E )/2 + ∆(E )

Qj,k(E) = 2π
∑
c

Ac
j (E)Ac

k(E)∗ρc(E) ∆j,k(E) =
∑
c

P.V .

∫
dE ′

Ac
j (E ′)Ac

k(E ′)∗ρc(E ′)

E − E ′

Ac
j (E ) is coupling of site j to continuum channel c

ρc(E ) is continuum density of states

In practice, convenient to approximate with energy-independent effective
Hamiltonian (matrix)

Heff = Hsys − iQ(E0)/2

Valid for broad-banded continuum spectrum

Opening may be small or large

Same approximation as Fermi Golden Rule (for one channel)
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Quantum Network – Incorporating Openness

Example: Linear Chain with Openness

ωN ω1  ω3 ωN-1 ω2

 Ω  Ω  Ω
Sink

Γtrap

Site N coupled to reaction center (rate Γtrap)

Excitation on any site may decay through recombination (rate Γfl)

(Heff)j ,k = ωjδj ,k + Ω (δj ,k+1 + δj ,k−1)− i

2
(Γtrapδj ,N + Γfl) δj ,k
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Finite Temperature Effects

Cannot work with quantum states
⇒ Need density matrix formalism

Quantum master equation

ρ̇(t) = −Ltot ρ(t)

Ltot = Lsys + Ltrap + Lfl + Ldeph

(Lsys + Ltrap + Lfl) ρ = i [Hsys, ρ] +
Γtrap

2
{|N 〉 〈N | , ρ}+ Γflρ

Simplest dephasing operator: Haken-Strobl-Reineker (HSR) model

(Ldephρ)j ,k = γρjk (1− δj ,k)

i.e. ρ̇jk = . . .− γρjk for j 6= k [γ ∼ temperature]
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Integrating Master Equation

In general must numerically integrate ρ̇(t) = −Ltot ρ(t), starting from ρ(0)

In practice, often interested in efficiency:

η =total probability of successfully ending up in the trap

η = Γtrap

∫ ∞
0

ρNN(t) dt = Γtrap(L−1
totρ(0))NN

... or in transfer time:

τ =average time to reach the trap

τ =
Γtrap

η

∫ ∞
0

ρNN(t) t dt =
Γtrap

η
(L−2

totρ(0))NN
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Basic Formalism: Openness, Disorder, and Dephasing Quantum Mechanics

Efficiency η vs. transfer time τ

To have high efficiency we need Γfl to be small

Then effect of Γfl on η and τ may be treated perturbatively
(J Cao and RJ Silbey, 2009)

τ is independent of Γfl to leading order

η to leading order given in terms of τ :

η ≈ 1

1 + Γflτ

Maximizing η is equivalent to minimizing τ , so wlog will focus on τ in
the following
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Basic Formalism: Openness, Disorder, and Dephasing Classical and Leegwater Formulations

Classical Model (Förster, 1965)

Want to model network dynamics with classical (incoherent) master
equation, where particle jumps from site to site

dPi

dt
=
∑
j

(Tj→iPj − Ti→jPi )

Need to match quantum behavior for fast dephasing rate γ:

(Tcl)i→j =
2Ω2γ

γ2 + (ωi − ωj)2

for sites i , j , coupled by quantum hopping amplitude Ω

For open system, adding escape rate is trivial, e.g. for linear chain

dPi

dt
=

2Ω2γ (Pi+1 − Pi )

γ2 + (ωi+1 − ωi )2
+

2Ω2γ (Pi−1 − Pi )

γ2 + (ωi−1 − ωi )2
− (Γfl + Γtrapδi ,N)Pi
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Basic Formalism: Openness, Disorder, and Dephasing Classical and Leegwater Formulations

Leegwater Approximation (Leegwater, 1996)

Leegwater approximation also takes form of a “classical” master equation
but the rates are non-classical:

(TL)i→j =


2Ω2γ

(γ+Γtrap/2)2+(ωi−ωj )2 , either i or j connected to trap

2Ω2γ
γ2+(ωi−ωj )2 , otherwise

Leegwater incorporates some effects of quantum coherence, e.g.
resonance trapping

In some important cases may provide useful approximation for
quantum behavior even where classical model fails
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Opening-Assisted Quantum Transport Enhancement Two-Site Model

Opening-Assisted Quantum Transport Enhancement

Begin with 2-site model
incorporating

Disorder (detuning)

Dephasing

Openness

Interested in time to reach trap
starting from site 1
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Opening-Assisted Quantum Transport Enhancement Two-Site Model

2-Site Model

Superradiance (SR) in 2-Site Model

Reorganization of resonance widths at
Γtrap = 2∆

Ω = 1, ∆ = 10

Opening-Assisted Quantum Transport

Quantum transport faster than classical
Transport optimized at SR transition

Ω = 0.1, γ = 1, ∆ = 10

Semiclassical regime – dephasing
much faster than transport

Nevertheless classical model breaks
down at nonzero opening
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Opening-Assisted Quantum Transport Enhancement Two-Site Model

2-Site Model

Analytic: Classical

τcl = 1
2Ω2

(
4Ω2

Γtrap
+ γ + ∆2

γ

)
Analytic: Quantum (=Leegwater!)

τQ = τL = 1
2Ω2

(
4Ω2

Γtrap
+ γ +

Γtrap

2 + ∆2

γ+
Γtrap

2

)
Known result - e.g. J Cao & RJ Silbey, 2009
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Observations:

For small Ω, optimal coupling to opening is Γopt
trap = 2∆− 2γ

Quantum faster by factor (∆2 + γ2)/2∆γ ≈ ∆/2γ for ∆� γ

Dephasing and openness combine to aid transport (counteracting
localization)
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Opening-Assisted Quantum Transport Enhancement Two-Site Model

Quantum Enhancement Regime in 2-Site Model

Large opening
Γtrap ⇒ quantum
suppression (Zeno /
Resonance trapping)

Small opening
Γtrap ⇒ classical
Förster regime

Quantum
enhancement for Γtrap

near SR

Enhancement regime
grows with increasing
disorder
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Opening-Assisted Quantum Transport Enhancement Linear Chain

What About Chain of Arbitrary Length N?

ωN ω1  ω3 ωN-1 ω2

 Ω  Ω  Ω
Sink

Γtrap

Need to average over disorder

ωi ∈ [−W /2,W /2] ⇒ ∆2 →W 2/6

Analytic results:

〈τcl〉W =
N

Γtrap
+

N (N − 1)

4Ω2

(
γ +

W 2

6γ

)

〈τL〉W =
N

Γtrap
+

N (N − 1)

4Ω2

[
γ +

Γtrap

N
+

W 2

6γ

(
1− 2Γtrap

N(2γ + Γtrap)

)]
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Opening-Assisted Quantum Transport Enhancement Linear Chain

What About Chain of Arbitrary Length N?

Analytic results:

〈τcl〉W =
N

Γtrap
+

N (N − 1)

4Ω2

(
γ +

W 2

6γ

)

〈τL〉W =
N

Γtrap
+

N (N − 1)

4Ω2

[
γ +

Γtrap

N
+

W 2

6γ

(
1− 2Γtrap

N(2γ + Γtrap)

)]
〈τQ〉W
〈τL〉W

= 1− O

(
Ω2

γW

)
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Opening-Assisted Quantum Transport Enhancement Linear Chain

For simplicity, take N large

Significant quantum enhancement over classical transport when:

γ .
Γtrap

2
<

W 2

6γ
− γ

Again, need disorder sufficiently strong relative to dephasing

Optimal quantum transport for opening strength:

Γopt = 2
(
W /
√

6− γ
)

Note both results independent of chain length N!
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Opening-Assisted Quantum Transport Enhancement Linear Chain

Linear Chain: Numerical Results (N = 3, Ω = 1)
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Opening-Assisted Quantum Transport Enhancement Linear Chain

Linear Chain: Numerical Results (Ω = 1, γ = 10, W = 50)
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Opening-Assisted Quantum Transport Enhancement Fully Connected Network

Fully Connected Network

Hfc =
N∑
j=1

ωj |j 〉 〈j |+ Ω
∑

1≤j<k≤N
(|j 〉 〈k |+ |k 〉 〈j |)

As before, we

Connect site N to opening with coupling Γtrap

Start on (arbitrarily chosen) site 1

Calculate average time τ to reach opening
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Opening-Assisted Quantum Transport Enhancement Fully Connected Network

Fully Connected Network: Calculations

Focus on regime of strong disorder and opening, where quantum transport
enhancement is strongest

Γtrap/N ∼W /N � γ � Ω

Quantum transport

〈τL〉W =
3Γ2

trap + 2W 2

12Ω2Γtrap

〈τQ〉W
〈τL〉W

= 1 + O

(
N2Ω2

W 3/2γ1/2

)

Classical transport

〈τcl〉W ∼
W 2

NγΩ2
(Levy Flight)
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Opening-Assisted Quantum Transport Enhancement Fully Connected Network

Fully Connected Network: Calculations

Optimal opening is again proportional to disorder

Γopt =

√
2

3
W

Quantum transport enhancement at optimal opening

〈τQ〉W
〈τcl〉W

∼ γ

W /N
� 1
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Opening-Assisted Quantum Transport Enhancement Fully Connected Network

Fully Connected Network (N = 10, Ω = 1, γ = 5)

!
trap
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Opening-Assisted Quantum Transport Enhancement Fully Connected Network

Fully Connected Network (Ω = 1, γ = 5, W = 500)

! trap
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FMO Photosynthetic Complex

FMO Photosynthetic Complex

Each FMO subunit contains seven
chromophores

Connectivity intermediate between 1D
chain and fully connected extremes

Dephasing rate γ = 0.52(T/K) cm−1

(Panitchayangkoon et al., 2010) 3

1

2

6

7

4

5

Exciton Initialization

        RC (Sink) 

HFMO =



200 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 320 30.8 8.2 0.7 11.8 4.3

5.5 30.8 0 −53.5 −2.2 −9.6 6
−5.9 8.2 −53.5 110 −70.7 −17 −63.3
6.7 0.7 −2.2 −70.7 270 81.1 −1.3
−13.7 11.8 −9.6 −17 81.1 420 39.7
−9.9 4.3 6 −63.3 −1.3 39.7 230


cm−1
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FMO Photosynthetic Complex

FMO: Numerics

!
trap

(ps-1)
100 101 102 103

= 
(p

s)

100

101

102
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T=300K

T=1500K
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When Does Dephasing Aid Transport in Open Systems?

When Does Dephasing Aid Transport in Open Systems?

Answer: In linear chain, dephasing helps for disorder strength

W >Wcr ≈ min(Γtrap,Ω
2/Γtrap)/N2

Notice strong
(and non-monotonic)
dependence on degree of
opening!

Ω = 1

!
trap

10-2 10-1 100 101 102 103

N
2
 W

cr

10-2

10-1

100

101
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103

N=15

N=20

N=25

N=30
Dephasing aids transport

Dephasing slows down transport
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When Does Dephasing Aid Transport in Open Systems?

Optimal Dephasing: Three Regimes (Ω = 1, Γtrap = 1/16)

γ_opt ~ (W-Wcr)/N

γ_opt ~ W/sqrt(N)

γ_opt ~ W
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Summary

Summary

Non-Hermitian Hamiltonian formalism is general framework for
studying open quantum systems with disorder and dephasing

Quantum systems display non-trivial behavior as opening size
varied: strongly enhanced coherent transport near superradiance
transition

Effect survives at finite temperature if temperature not too high
(compared to energy scales in Hamiltonian)

Analytic results obtained in paradigmatic models: Linear chain,
fully connected network

FMO is example of opening-assisted coherent transport
enhancement

Regime of noise-assisted transport also depends strongly on
degree of opening
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Summary

Thank you!

Lev Kaplan (Tulane University) Transport in Open Disordered Systems NMP17 36 / 36


	Motivation and Overview
	Basic Formalism: Openness, Disorder, and Dephasing
	Quantum Mechanics
	Classical and Leegwater Formulations

	Opening-Assisted Quantum Transport Enhancement
	Two-Site Model
	Linear Chain
	Fully Connected Network

	FMO Photosynthetic Complex
	When Does Dephasing Aid Transport in Open Systems?
	Summary

