The Left Hand of the Electron in Superfluid ³He

J. A. Sauls

Northwestern University

Oleksii Shevtsov

- Parity violation
- Superfluid ³He
- Edge States & Currents

- Electron Bubbles in ³He
 - Anomalous Hall Effect
 - Electron Transport in ³He

▶ NSF Grant DMR-1508730

▶ An Essay on the Discovery of Parity Violation by the Weak Interaction

Parity Violation in Beta Decay of 60 Co - Physical Review 105, 1413 (1957)

Experimental Test of Parity Conservation in Beta Decay*

C. S. Wu, Columbia University, New York, New York

AND

E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

Experimental Test of Parity Conservation in Beta Decay*

C. S. Wu, Columbia University, New York, New York

AND

- E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)
 - ▶ T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956)

$$^{60}Co \rightarrow ~^{60}Ni + e^- + \bar{\nu}$$

Experimental Test of Parity Conservation in Beta Decay*

C. S. Wu, Columbia University, New York, New York AND

- E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)
 - ▶ T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956)

$$^{60}Co \rightarrow ^{60}Ni + e^{-} + \bar{\nu}$$

Fig. 2. Gamma anisotropy and beta asymmetry for polarizing field pointing up and pointing down.

Current of Beta electrons is (anti) correlated with the Spin of the ⁶⁰Co nucleus. $\langle \vec{S} \cdot \vec{p} \rangle \neq 0 \leadsto \text{Parity violation}$

Parity Violation in a Superfluid Vacuum of Liquid ³He

$$\begin{split} | \, \Phi_N \, \rangle &= \left[\iint \! d\mathbf{r}_1 d\mathbf{r}_2 \, \left[\varphi_{s_1 s_2}(\mathbf{r}_1 - \mathbf{r}_2) \, \right] \psi_{s_1}^\dagger(\mathbf{r}_1) \psi_{s_2}^\dagger(\mathbf{r}_2) \right]^{N/2} | \operatorname{vac} \rangle \\ & \varphi_{s_1 s_2}(\mathbf{r}) = f(|\mathbf{r}|/\xi) \, \left(x + i y \right) \, \chi_{s_1 s_2} \end{split}$$

▶ P.W. Anderson & P. Morel, Phys. Rev. 123, 1911 (1961)

Parity Violation in a Superfluid Vacuum of Liquid ³He

Chiral P-wave BCS Condensate $|\Phi_N\rangle = \left[\iint\!\! d\mathbf{r}_1 d\mathbf{r}_2 \; \varphi_{s_1s_2}(\mathbf{r}_1-\mathbf{r}_2) \; \psi_{s_1}^\dagger(\mathbf{r}_1) \psi_{s_2}^\dagger(\mathbf{r}_2)\right]^{N/2} |\operatorname{vac}\rangle$ $\varphi_{s_1s_2}(\mathbf{r}) = f(|\mathbf{r}|/\xi) \; (x+iy) \; \chi_{s_1s_2}$ P.W. Anderson & P. Morel, Phys. Rev. 123, 1911 (1961)

Parity Violation in a Superfluid Vacuum of Liquid ³He

Chiral P-wave BCS Condensate
$$|\Phi_N\rangle = \left[\iint\!\! d\mathbf{r}_1 d\mathbf{r}_2 \left[\varphi_{s_1s_2}(\mathbf{r}_1 - \mathbf{r}_2) \right] \psi_{s_1}^\dagger(\mathbf{r}_1) \psi_{s_2}^\dagger(\mathbf{r}_2) \right]^{N/2} \!\! |\operatorname{vac}\rangle$$

$$\varphi_{s_1s_2}(\mathbf{r}) = f(|\mathbf{r}|/\xi) \left[(x+iy) \right] \chi_{s_1s_2}$$

P.W. Anderson & P. Morel, Phys. Rev. 123, 1911 (1961)

$$\mathtt{SO}(3)_{\mathsf{S}} \times \mathtt{SO}(3)_{\mathsf{L}} \times \mathtt{U}(1)_{\mathsf{N}} \times \textcolor{red}{\mathtt{T}} \times \textcolor{red}{\mathtt{P}} \longrightarrow \mathtt{SO}(2)_{\mathsf{S}} \times \mathtt{U}(1)_{\mathsf{N-L}_z} \times \textcolor{red}{\mathtt{Z}_2}$$

Realized in the Superfluid Ground State of Liquid ³He

The ³He Paradigm: Maximal Symmetry $G = SO(3)_S \times SO(3)_L \times U(1)_N \times P \times T$

BCS Condensate Amplitude:

$$\Psi_{\alpha\beta}(p) = \langle \psi_{\alpha}(p)\psi_{\beta}(-p)\rangle$$

BCS Condensate Amplitude:

$$\Psi_{\alpha\beta}(p) = \langle \psi_{\alpha}(p)\psi_{\beta}(-p)\rangle$$

"Isotropic" BW State

$$J=0,\ J_z=0$$

$$H = SO(3)_J \times T$$

Chiral AM State $\vec{l} = \hat{\mathbf{z}}$

$$\begin{pmatrix} \Psi_{\uparrow\uparrow} & \Psi_{\uparrow\downarrow} \\ \Psi_{\uparrow\downarrow} & \Psi_{\downarrow\downarrow} \end{pmatrix}_{BW} = \begin{pmatrix} p_x - ip_y \sim e^{-i\phi} & p_z \\ p_z & p_x + ip_y \sim e^{+i\phi} \end{pmatrix}$$

$$\begin{pmatrix} \Psi_{\uparrow\uparrow} & \Psi_{\uparrow\downarrow} \\ \Psi_{\uparrow\downarrow} & \Psi_{\downarrow\downarrow} \end{pmatrix}_{AM} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H} = \begin{pmatrix} p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} & 0 \\ 0 & p_x + ip_y \sim \frac{e^{+i\phi}}{e^{+i\phi}} \end{pmatrix}_{H}$$

$$L_z = 1, S_z = 0$$

$$H = \text{U(1)}_{\text{S}} \times \text{U(1)}_{\text{L}_z\text{-N}} \times \text{Z}_2$$

$$H = \mathrm{U}(1)_{\mathrm{S}} \times \mathrm{U}(1)_{\mathrm{L}_z}$$

Signatures of Broken T and P Symmetry in ³He-A

What is the Signature & Evidence for Chirality of Superfluid ³He-A?

Signatures of Broken T and P Symmetry in ³He-A

What is the Signature & Evidence for Chirality of Superfluid ³He-A?

Spontaneous Symmetry Breaking → Emergent Topology of ³He-A

Chirality + Topology → Edge States & Chiral Edge Currents

Broken T and P → Anomalous Hall Effect for electrons in ³He-A

Topology in Real Space
$$\Psi(\mathbf{r}) = \left|\Psi(r)\right| e^{i\vartheta(\mathbf{r})}$$

Phase Winding

$$N_C = \frac{1}{2\pi} \oint_C \, d\vec{l \cdot} \, \frac{1}{|\Psi|} \mathrm{Im}[\boldsymbol{\nabla} \Psi] \in \{0, \pm 1, \pm 2, \dots$$

► Massless Fermions confined in the Vortex Core

Real-Space vs. Momentum-Space Topology

Topology in Real Space
$$\Psi(\mathbf{r}) = \left| \Psi(r) \right| e^{i\vartheta(\mathbf{r})}$$

Chiral Symmetry →
Topology in Momentum Space

Phase Winding

$$N_C = \frac{1}{2\pi} \oint_C \, d\vec{l\cdot} \frac{1}{|\Psi|} \mathrm{Im}[\boldsymbol{\nabla} \Psi] \in \{0, \pm 1, \pm 2, \dots$$

Massless Fermions confined in the Vortex Core

Topological Quantum Number: $L_z=\pm 1$

$$N_{\rm 2D} = \frac{1}{2\pi} \oint \; d\mathbf{p} \cdot \frac{1}{|\Psi(\mathbf{p})|} {\rm Im}[\boldsymbol{\nabla}_{\mathbf{p}} \Psi(\mathbf{p})] = L_z$$

- ► Massless Chiral Fermions
 - ▶ Nodal Fermions in 3D
 - ► Edge Fermions in 2D

Ground-State Angular Momentum of ³He-A in a Toroidal Geometry

³He-A confined in a toroidal cavity

- Sheet Current: $J=\frac{1}{4}\,n\,\hbar\,\,\,(n=N/V={}^3{
 m He}\,\,{
 m density})$
- Counter-propagating Edge Currents: $J_1 = -J_2 = \frac{1}{4} n \, \hbar$
- Angular Momentum:

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Long-Standing Challenge: The Ground-State Angular Momentum of ³He-A

Possible Gyroscopic Experiment to Measure of $\mathcal{L}_z(T)$

 \blacktriangleright Hyoungsoon Choi (KAIST) [sub-micron mechanical gyroscope @ 200 μ K]

Thermal Signature of Chiral Edge States

Power Law for $T \lesssim 0.5T_c$

$$L_z = (N/2)\hbar \left(1 - \frac{c \left(T/\Delta\right)^2}{\right)}$$

Toroidal Geometry with Engineered Surfaces

► Incomplete Screening

$$L_z > (N/2)\hbar$$

Direct Signature of Edge Currents

- J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
- Y. Tsutsumi, K. Machida, JPSJ 81, 074607 (2012)

Unbounded Film of ³He-A perforated by a Hole

 $\qquad \qquad R \gg \xi_0 \approx 100 \, \mathrm{nm}$

Unbounded Film of ³He-A perforated by a Hole

• $R \gg \xi_0 \approx 100 \, \mathrm{nm}$

- ullet Magnitude of the Sheet Current: $rac{1}{4}\,n\,\hbar\,$ $(n=N/V={}^3{
 m He}$ density)
- ullet Edge Current *Counter*-Circulates: $J=-rac{1}{4}\,n\,\hbar$ w.r.t. Chirality: $\hat{f l}=+{f z}$

Unbounded Film of ³He-A perforated by a Hole

 $\qquad \qquad R \gg \xi_0 \approx 100 \, \mathrm{nm}$

- ullet Magnitude of the Sheet Current: $\dfrac{1}{4}\,n\,\hbar\,$ $(n=N/V={}^3{
 m He}$ density)
- ullet Edge Current $\it Counter$ -Circulates: $J=-rac{1}{4}\,n\,\hbar$ w.r.t. Chirality: $\hat{f l}=+{f z}$
- Angular Momentum: $L_z = 2\pi h R^2 \times (-\frac{1}{4} n \hbar) = -(N_{\text{hole}}/2) \hbar$

 $N_{\mathsf{hole}} = \mathsf{Number} \ \mathsf{of} \ ^3\mathsf{He} \ \mathsf{atoms} \ \mathsf{excluded} \ \mathsf{from} \ \mathsf{the} \ \mathsf{Hole}$

... An object in ³He-A *inherits* angular momentum from the Condensate of Chiral Pairs!

Electron bubbles in the Normal Fermi liquid phase of ³He

- $\begin{tabular}{ll} \bullet & \begin{tabular}{ll} \begin{tabular}{ll}$
- Effective mass $M \simeq 100 m_3$ (m_3 atomic mass of $^3{\rm He}$)

- QPs mean free path $l \gg R$
- Mobility of 3 He is *independent of* T for $T_{\rm c} < T < 50$ mK
 - B. Josephson and J. Leckner, PRL 23, 111 (1969)

Electron bubbles in chiral superfluid ³He-A

$$\Delta_{\mathcal{A}}(\hat{\mathbf{k}}) = \Delta \frac{k_x + ik_y}{k_f} = \Delta e^{i\phi_{\mathbf{k}}}$$

- Current: $\mathbf{v} = \overbrace{\mu_{\perp} \mathcal{E}}^{\mathbf{V_{AH}}} + \overbrace{\mu_{AH} \mathcal{E} \times \hat{\mathbf{l}}}^{\mathbf{V_{AH}}}$ R. Salmelin, M. Salomaa & V. Mineev, PRL 63, 868 (1989)
- Hall ratio: $an lpha = v_{\mathsf{AH}}/v_{\mathcal{E}} = |\mu_{\mathsf{AH}}/\mu_{\perp}|$

Measurement of the Transverse e⁻ mobility in Superfluid ³He Films

Measurement of the Transverse e⁻ mobility in Superfluid ³He Films

Transverse Force from **Skew Scattering**

$$\rightsquigarrow \Delta I = I_R - I_L \neq 0$$

$$ec{v} = \left[\mu_{\perp} \, ec{E} + \frac{\mu_{xy} \, \hat{\ell} imes ec{E}}{ec{\ell}}
ight]$$

Transverse e⁻ bubble current in ${}^{3}\text{He-A}$ $\Delta I = I_R - I_L$

Zero Transverse e⁻ current in ³He-B (*T* - *symmetric phase*)

Zero Transverse e⁻ current in ³He-B (*T* **- symmetric phase**)

Mobility of Electron Bubbles in ³He-A

- $M \frac{d\mathbf{v}}{dt} = e \mathbf{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}$, \mathbf{F}_{QP} force from quasiparticle collisions
- $oldsymbol{f F}_{QP}=-\stackrel{\leftrightarrow}{\eta}\cdot{f v},\quad\stackrel{\leftrightarrow}{\eta}$ generalized Stokes tensor

- $M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}$, \mathbf{F}_{QP} force from quasiparticle collisions
- $oldsymbol{f F}_{QP}=-\stackrel{\leftrightarrow}{\eta}\cdot{f v},\quad\stackrel{\leftrightarrow}{\eta}$ generalized Stokes tensor

$$\bullet \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\rm AH} & 0 \\ -\frac{\eta_{\rm AH}}{0} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\parallel} \end{pmatrix} \quad \text{for chiral symmetry with } \hat{\mathbf{l}} \parallel \mathbf{e}_z$$

- $M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}$, \mathbf{F}_{QP} force from quasiparticle collisions
- $oldsymbol{f F}_{QP}=-\stackrel{\leftrightarrow}{\eta}\cdot{f v},\quad\stackrel{\leftrightarrow}{\eta}$ generalized Stokes tensor

$$\bullet \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\rm AH} & 0 \\ -\frac{\eta_{\rm AH}}{0} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\parallel} \end{pmatrix} \quad \text{for chiral symmetry with } \hat{\mathbf{1}} \parallel \mathbf{e}_z$$

•
$$M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}$$
, for $\mathbf{\mathcal{E}} \perp \hat{\mathbf{l}}$

- $M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} + \mathbf{F}_{\mathrm{QP}}$, \mathbf{F}_{QP} force from quasiparticle collisions
- $oldsymbol{f F}_{QP}=-\stackrel{\leftrightarrow}{\eta}\cdot{f v}, \quad \stackrel{\leftrightarrow}{\eta}$ generalized Stokes tensor

$$\bullet \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\rm AH} & 0 \\ -\frac{\eta_{\rm AH}}{0} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\parallel} \end{pmatrix} \quad \text{for chiral symmetry with } \hat{\mathbf{1}} \parallel \mathbf{e}_z$$

•
$$M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}$$
, for $\mathbf{\mathcal{E}} \perp \hat{\mathbf{l}}$

•
$${f B}_{
m eff} = -rac{c}{e} \eta_{
m AH} {f \hat{l}} ~~B_{
m eff} \simeq 10^3 - 10^4 {
m \, T}$$
 !!!

- $M \frac{d {f v}}{dt} = e {m {\cal E}} + {f F}_{
 m QP}$, ${f F}_{QP}$ force from quasiparticle collisions
- $oldsymbol{f F}_{QP}=-\stackrel{\leftrightarrow}{\eta}\cdot{f v}, \quad \stackrel{\leftrightarrow}{\eta}$ generalized Stokes tensor

$$\bullet \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\rm AH} & 0 \\ -\frac{\eta_{\rm AH}}{0} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\parallel} \end{pmatrix} \quad \text{for chiral symmetry with } \hat{\mathbf{1}} \parallel \mathbf{e}_z$$

•
$$M \frac{d\mathbf{v}}{dt} = e\mathbf{\mathcal{E}} - \eta_{\perp}\mathbf{v} + \frac{e}{c}\mathbf{v} \times \mathbf{B}_{\text{eff}}$$
, for $\mathbf{\mathcal{E}} \perp \hat{\mathbf{l}}$

•
$${f B}_{
m eff} = -rac{c}{e} \eta_{
m AH} {f \hat{l}} ~~B_{
m eff} \simeq 10^3 - 10^4 {
m \, T}$$
 !!!

$$ullet rac{d\mathbf{v}}{dt} = 0 \quad \leadsto \quad \mathbf{v} = \stackrel{\leftrightarrow}{\mu} \mathcal{E}, \quad ext{where} \quad \stackrel{\leftrightarrow}{\mu} = e \stackrel{\leftrightarrow}{\eta}^{-1}$$

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

T-matrix description of Quasiparticle-Ion scattering

▶ Lippmann-Schwinger equation for the *T*-matrix ($\varepsilon = E + i\eta$; $\eta \to 0^+$):

$$\hat{T}_{S}^{R}(\mathbf{k}',\mathbf{k},E) = \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}) + \int \frac{d^{3}k''}{(2\pi)^{3}} \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}'') \Big[\hat{G}_{S}^{R}(\mathbf{k}'',E) - \hat{G}_{N}^{R}(\mathbf{k}'',E) \Big] \hat{T}_{S}^{R}(\mathbf{k}'',\mathbf{k},E)$$

$$\hat{G}_{S}^{R}(\mathbf{k}, E) = \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad E_{\mathbf{k}} = \sqrt{\xi_{k}^{2} + |\Delta(\hat{\mathbf{k}})|^{2}}, \quad \xi_{k} = \frac{\hbar^{2} k^{2}}{2m^{*}} - \mu$$

Normal-state T-matrix:

$$\hat{T}_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \begin{pmatrix} t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) & 0 \\ 0 & -[t_N^R(-\hat{\mathbf{k}}',-\hat{\mathbf{k}})]^\dagger \end{pmatrix} \quad \text{in p-h (Nambu) space}$$

J. A. Sauls

T-matrix description of Quasiparticle-lon scattering

▶ Lippmann-Schwinger equation for the T-matrix ($\varepsilon = E + i\eta$; $\eta \to 0^+$):

$$\hat{T}_{S}^{R}(\mathbf{k}',\mathbf{k},E) = \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}) + \int \frac{d^{3}k''}{(2\pi)^{3}} \hat{T}_{N}^{R}(\mathbf{k}',\mathbf{k}'') \Big[\hat{G}_{S}^{R}(\mathbf{k}'',E) - \hat{G}_{N}^{R}(\mathbf{k}'',E) \Big] \hat{T}_{S}^{R}(\mathbf{k}'',\mathbf{k},E)$$

$$\hat{G}_S^R(\mathbf{k}, E) = \frac{1}{\varepsilon^2 - E_{\mathbf{k}}^2} \begin{pmatrix} \varepsilon + \xi_k & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_k \end{pmatrix}, \quad E_{\mathbf{k}} = \sqrt{\xi_k^2 + |\Delta(\hat{\mathbf{k}})|^2}, \quad \xi_k = \frac{\hbar^2 k^2}{2m^*} - \mu$$

▶ Normal-state *T*-matrix:

$$\hat{T}_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \begin{pmatrix} t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) & 0 \\ 0 & -[t_N^R(-\hat{\mathbf{k}}',-\hat{\mathbf{k}})]^\dagger \end{pmatrix} \quad \text{in p-h (Nambu) space, where}$$

$$t_N^R(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = -\frac{1}{\pi N_f} \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l} \sin \delta_l P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}}), \quad P_l(x) - \text{Legendre function}$$

- ▶ Hard-sphere potential $\leadsto an \delta_l = j_l(k_f R)/n_l(k_f R)$ spherical Bessel functions
 - $ightharpoonup k_f R$ determined by the Normal-State Mobility

Calculation of LDOS and Current Density

$$\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}', \mathbf{r}, E) = \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}'\mathbf{r}'} e^{-i\mathbf{k}\mathbf{r}} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}', \mathbf{k}, E)$$

$$\hat{\mathcal{G}}_S^R(\mathbf{k}',\mathbf{k},E) = (2\pi)^3 \hat{G}_S^R(\mathbf{k},E) \delta_{\mathbf{k}',\mathbf{k}} + \hat{G}_S^R(\mathbf{k}',E) \hat{T}_S(\mathbf{k}',\mathbf{k},E) \hat{G}_S^R(\mathbf{k},E)$$

$$\hat{G}_{S}^{R}(\mathbf{k}, E) = \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad \varepsilon = E + i\eta, \quad \eta \to 0^{+}$$

$$N(\mathbf{r}, E) = -\frac{1}{2\pi} \text{Im} \left\{ \text{Tr} \left[\hat{\mathcal{G}}_S^R(\mathbf{r}, \mathbf{r}, E) \right] \right\}$$

$$\mathbf{j}(\mathbf{r}) = \frac{\hbar}{4mi} k_B T \sum_{n=-\infty}^{\infty} \lim_{\mathbf{r} \to \mathbf{r}'} \operatorname{Tr} \left[(\nabla_{\mathbf{r}'} - \nabla_{\mathbf{r}}) \hat{\mathcal{G}}^M(\mathbf{r}', \mathbf{r}, \epsilon_n) \right]$$

$$\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}', \mathbf{r}, E) = \hat{\mathcal{G}}_{S}^{M}(\mathbf{r}', \mathbf{r}, \epsilon_{n}) \Big|_{i\epsilon_{n} \to \varepsilon}, \text{ for } n \ge 0$$

$$\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}, \mathbf{k}', -\epsilon_{n}) = \left[\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}', \mathbf{k}, \epsilon_{n})\right]^{\dagger}$$

The Left Hand of the Electron in Superfluid ³He

Weyl Fermion Spectrum bound to the Electron Bubble

$$\mu_{\rm N} = \frac{e}{n_3 p_f \sigma_{\rm N}^{\rm tr}} \quad \Leftarrow \quad \mu_{\rm N}^{\rm exp} = 1.7 \times 10^{-6} \, \frac{m^2}{V \, s}$$

$$\tan \delta_l = j_l(k_f R)/n_l(k_f R) \quad \Rightarrow \quad \sigma_{\rm N}^{\rm tr} = \frac{4\pi}{k_f^2} \sum_{l=0}^{\infty} (l+1) \sin^2(\delta_{l+1} - \delta_l) \quad \rightsquigarrow \quad k_f R = 11.17$$

Current density bound to an electron bubble $(k_f R = 11.17)$

Current density bound to an electron bubble $(k_f R = 11.17)$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}),$$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau'\sigma';\tau\sigma} |\overbrace{\langle \mathbf{k}',\sigma',\tau' | \hat{T}_S | \mathbf{k},\sigma,\tau \rangle}^{\text{outgoing}}|^2$$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}', \mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau' \sigma'; \tau \sigma} |\overbrace{\langle \mathbf{k}', \sigma', \tau' | \hat{T}_S | \mathbf{k}, \sigma, \tau \rangle}^{\text{outgoing}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k},\mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}',\mathbf{k})$$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}', \mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau' \sigma'; \tau \sigma} |\overbrace{\langle \mathbf{k}', \sigma', \tau' | \hat{T}_S | \mathbf{k}, \sigma, \tau \rangle}^{\text{outgoing}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k}, \mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}', \mathbf{k})$$

(iii) Microscopic reversibility condition: $W(\hat{\mathbf{k}}',\hat{\mathbf{k}}:+\mathbf{l})=W(\hat{\mathbf{k}},\hat{\mathbf{k}}':-\mathbf{l})$

Broken T and mirror symmetries in ${}^3\text{He-A} \ \Rightarrow \ \text{fixed} \ \hat{\mathbf{l}} \ \leadsto \ W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \neq W(\hat{\mathbf{k}},\hat{\mathbf{k}}')$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}', \mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau' \sigma'; \tau \sigma} |\overbrace{\langle \mathbf{k}', \sigma', \tau' | \hat{T}_S | \mathbf{k}, \sigma, \tau \rangle}^{\text{outgoing}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k}, \mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}', \mathbf{k})$$

(iii) Microscopic reversibility condition: $W(\hat{\mathbf{k}}',\hat{\mathbf{k}}:+\mathbf{l})=W(\hat{\mathbf{k}},\hat{\mathbf{k}}':-\mathbf{l})$

Broken T and mirror symmetries in ${}^3\text{He-A} \ \Rightarrow \ \text{fixed} \ \hat{\mathbf{l}} \ \leadsto \ W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \neq W(\hat{\mathbf{k}},\hat{\mathbf{k}}')$

(iv) Generalized Stokes tensor:

$$\mathbf{F}_{\mathsf{QP}} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}$$

(i) Fermi's golden rule and the QP scattering rate:

$$\Gamma(\mathbf{k}',\mathbf{k}) = \frac{2\pi}{\hbar} W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \delta(E_{\mathbf{k}'} - E_{\mathbf{k}}), \quad W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = \frac{1}{2} \sum_{\tau'\sigma';\tau\sigma} |\overbrace{\langle \mathbf{k}',\sigma',\tau' | \hat{T}_S | \mathbf{k},\sigma,\tau \rangle}^{\text{outgoing}}|^2$$

(ii) Drag force from QP-ion collisions (linear in v): Baym et al. PRL 22, 20 (1969)

$$\mathbf{F}_{\mathsf{QP}} = -\sum_{\mathbf{k}, \mathbf{k}'} \hbar(\mathbf{k}' - \mathbf{k}) \left[\hbar \mathbf{k}' \mathbf{v} f_{\mathbf{k}} \left(-\frac{\partial f_{\mathbf{k}'}}{\partial E} \right) - \hbar \mathbf{k} \mathbf{v} (1 - f_{\mathbf{k}'}) \left(-\frac{\partial f_{\mathbf{k}}}{\partial E} \right) \right] \Gamma(\mathbf{k}', \mathbf{k})$$

(iii) Microscopic reversibility condition: $W(\hat{\mathbf{k}}',\hat{\mathbf{k}}:+\mathbf{l})=W(\hat{\mathbf{k}},\hat{\mathbf{k}}':-\mathbf{l})$

Broken T and mirror symmetries in 3 He-A \Rightarrow fixed $\hat{1} \rightsquigarrow W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \neq W(\hat{\mathbf{k}},\hat{\mathbf{k}}')$

(iv) Generalized Stokes tensor:

$$\mathbf{F}_{\mathsf{QP}} = - \stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v} \quad \leadsto \quad \begin{bmatrix} \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2 \frac{\partial f}{\partial E} \right) \sigma_{ij}(E) \\ 0 & 0 & \eta_{\parallel} \end{bmatrix}, \quad \stackrel{\leftrightarrow}{\eta} = \begin{pmatrix} \eta_{\perp} & \eta_{\mathsf{AH}} & 0 \\ -\eta_{\mathsf{AH}} & \eta_{\perp} & 0 \\ 0 & 0 & \eta_{\parallel} \end{pmatrix}$$

$$n_3=rac{k_f^3}{3\pi^2}$$
 – 3 He particle density, $\sigma_{ij}(E)$ – transport scattering cross section, $f(E)=\left[\exp(E/k_BT)+1\right]^{-1}$ – Fermi Distribution

Mirror-symmetric scattering \Rightarrow longitudinal drag force

$$\mathbf{F}_{\mathsf{QP}} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2 \frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry:

$$W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}}', \hat{\mathbf{k}}) + W^{(-)}(\hat{\mathbf{k}}', \hat{\mathbf{k}}),$$

$$\sigma_{ij}(E) = \sigma_{ij}^{(+)}(E) + \sigma_{ij}^{(-)}(E),$$

$$\sigma_{ij}^{(+)}(E) = \frac{3}{4} \int_{E \geq |\Delta(\hat{\mathbf{k}}')|} \!\!\! d\Omega_{\mathbf{k}'} \int_{E \geq |\Delta(\hat{\mathbf{k}})|} \!\! \frac{d\Omega_{\mathbf{k}}}{4\pi} \frac{\left[(\hat{\mathbf{k}}'_i - \hat{\mathbf{k}}_i) (\hat{\mathbf{k}}'_j - \hat{\mathbf{k}}_j) \right]}{d\Omega_{\mathbf{k}'}} \frac{d\sigma^{(+)}}{d\Omega_{\mathbf{k}'}} (\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)$$

Mirror-symmetric cross section:
$$W^{(+)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) + W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$$

$$\frac{d\sigma^{(+)}}{d\Omega_{{\bf k'}}}(\hat{{\bf k}}',\hat{{\bf k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{{\bf k}}')|^2}} W^{(+)}(\hat{{\bf k}}',\hat{{\bf k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{{\bf k}})|^2}}$$

$$ightarrow$$
 Stokes Drag $\eta_{xx}^{(+)}=\eta_{yy}^{(+)}\equiv\eta_{\perp},\;\eta_{zz}^{(+)}\equiv\eta_{\parallel}$, No transverse force $\left[\eta_{ij}^{(+)}
ight]_{i\neq i}=0$

$$\left[\eta_{ij}^{(+)}\right]_{i\neq j} = 0$$

Mirror-antisymmetric scattering \Rightarrow transverse force

$$\mathbf{F}_{QP} = -\stackrel{\leftrightarrow}{\eta} \cdot \mathbf{v}, \quad \eta_{ij} = n_3 p_f \int_0^\infty dE \left(-2 \frac{\partial f}{\partial E}\right) \sigma_{ij}(E)$$

Subdivide by mirror symmetry:

$$W(\hat{\mathbf{k}}', \hat{\mathbf{k}}) = W^{(+)}(\hat{\mathbf{k}}', \hat{\mathbf{k}}) + \frac{W^{(-)}(\hat{\mathbf{k}}', \hat{\mathbf{k}})}{\sigma_{ij}(E)},$$

$$\sigma_{ij}(E) = \sigma_{ij}^{(+)}(E) + \frac{\sigma_{ij}^{(-)}(E)}{\sigma_{ij}^{(-)}(E)},$$

Mirror-antisymmetric cross section: $W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) = [W(\hat{\mathbf{k}}',\hat{\mathbf{k}}) - W(\hat{\mathbf{k}},\hat{\mathbf{k}}')]/2$

$$\frac{d\sigma^{(-)}}{d\Omega_{\mathbf{k'}}}(\hat{\mathbf{k}}',\hat{\mathbf{k}};E) = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}}')|^2}} W^{(-)}(\hat{\mathbf{k}}',\hat{\mathbf{k}}) \frac{E}{\sqrt{E^2 - |\Delta(\hat{\mathbf{k}})|^2}}$$

J. A. Sauls

Transverse force
$$\eta_{xy}^{(-)} = -\eta_{yx}^{(-)} \equiv \eta_{\rm AH}$$
 \Rightarrow anomalous Hall effect

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

The Left Hand of the Electron in Superfluid ³He

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Theoretical Results for the Drag and Transverse Forces

$$0.02$$
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

• $\Delta p_u \approx \hbar / R \ \sigma_{xy}^{\mathsf{tr}} \approx (\Delta(T)/k_{\mathsf{B}}T_c)^2 \sigma_{\mathsf{N}}^{\mathsf{tr}}$

•
$$F_x \approx n \, v_x \, \Delta p_x \, \sigma_{xx}^{\text{tr}}$$

 $\approx n \, v_x \, p_f \, \sigma_{\text{N}}^{\text{tr}}$

$$|F_y/F_x| pprox rac{\hbar}{p_f R} \left(\Delta(T)/k_B T_c\right)^2$$

$$\approx n \, v_x \, (\hbar/R) \, \sigma_{\rm N}^{\rm tr} (\Delta(T)/k_{\rm B} T_c)^2$$

$$|F_y/F_x| \approx \frac{\hbar}{p_f R} \left(\Delta(T)/k_{\rm B} T_c\right)^2 \qquad k_f R = 11.17$$

O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

• $F_y \approx n v_x \Delta p_y \sigma_{xy}^{tr}$

Comparison between Theory and Experiment for the Drag and Transverse Forces

•
$$\mu_{\perp} = e \, \frac{\eta_{\perp}}{\eta_{\perp}^2 + \eta_{\rm AH}^2}$$

$$\begin{aligned} \bullet \quad \mu_{\perp} &= e \, \frac{\eta_{\perp}}{\eta_{\perp}^2 + \eta_{\mathrm{AH}}^2} \\ \bullet \quad \mu_{\mathrm{AH}} &= -e \, \frac{\eta_{\mathrm{AH}}}{\eta_{\perp}^2 + \eta_{\mathrm{AH}}^2} \end{aligned}$$

•
$$\tan \alpha = \left| \frac{\mu_{AH}}{\mu_{\perp}} \right| = \frac{\eta_{AH}}{\eta_{\perp}}$$

• Hard-Sphere Model: $k_f R = 11.17$

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Summary

- Electrons in ³He-A are "dressed" by a spectrum of Weyl Fermions
- Electrons in 3 He-A are "Left handed" in a Right-handed Chiral Vacuum $\leadsto L_z \approx -(N_{bubble}/2)\hbar \approx -100\,\hbar$
- Experiment: RIKEN mobility experiments → Observation an AHE in ³He-A
- Scattering of Bogoliubov QPs by the dressed Ion \leadsto Drag Force $(-\eta_{\perp}\mathbf{v})$ and Transverse Force $(\frac{e}{c}\mathbf{v}\times\mathbf{B}_{eff})$ on the Ion
- Anomalous Hall Field: $\mathbf{B}_{\mathrm{eff}} pprox \frac{\Phi_0}{3\pi^2} \, k_f^2 \, (k_f R)^2 \, \left(\frac{\eta_{\mathrm{AH}}}{\eta_{\mathrm{N}}} \right) \, \mathbf{l} \simeq 10^3 10^4 \, \mathrm{T} \, \mathbf{l}$
- Mechanism: Skew/Andreev Scattering of Bogoliubov QPs by the dressed Ion
- $\qquad \underline{\mathsf{Origin:}} \ \, \mathsf{Broken} \ \, \mathsf{Mirror} \ \, \& \ \, \mathsf{Time-Reversal} \ \, \mathsf{Symmetry} \rightsquigarrow W(\mathbf{k},\mathbf{k}') \neq W(\mathbf{k}',\mathbf{k})$
- Theory: → Quantitative account of RIKEN mobility experiments
- Ongoing: New directions for Transport in ³He-A & Chiral Superconductors

Broken time-reversal (T) & mirror (Π_m) symmetries for Chiral Superfluids

- (1) Broken TRS: $T\hat{\mathbf{l}} = -\hat{\mathbf{l}}$
- (2) Broken mirror symmetry: $\Pi_m \hat{\mathbf{l}} = -\hat{\mathbf{l}}$
- (3) Chiral symmetry: $C = T \times \Pi_m$
- (4) Microscopic reversibility for chiral superfluids: $W(\hat{\mathbf{k}}',\hat{\mathbf{k}};\hat{\mathbf{l}}) = W(\hat{\mathbf{k}},\hat{\mathbf{k}}';-\hat{\mathbf{l}})$
- (5) ... For BTRS: the chiral axis $\hat{\bf l}$ is fixed $\leadsto W(\hat{\bf k}',\hat{\bf k}) \neq W(\hat{\bf k},\hat{\bf k}')$

Confinement: Superfluid Phases of ³He in Thin Films

Symmetry or Normal Liquid
3
He: $G = SO(3)_S \times SO(2)_L \times U(1)_N \times P \times T$

► Length Scale for Strong Confinement:

$$\xi_0=\hbar v_f/2\pi k_BT_c\approx 20-80\,\mathrm{nm}$$

Symmetry or Normal Liquid
$3He$
: $G = SO(3)_S \times SO(2)_L \times U(1)_N \times P \times T$

▶ Length Scale for Strong Confinement: $\xi_0=\hbar v_f/2\pi k_BT_c\approx 20-80\,\mathrm{nm}$ A. Vorontsov & JAS, PRL, 2007

→ Momentum-Space Topology of Nambu-Bogoliubov Hamiltonian

Hamiltonian for quasi-2D Chiral Superconductor (Sr₂RuO₄ & ³He-A Film):

$$\widehat{H} = \begin{pmatrix} (|\mathbf{p}|^2 / 2m^* - \mu) & \mathbf{c}(p_x + ip_y) \\ \mathbf{c}(p_x - ip_y) & -(|\mathbf{p}|^2 / 2m^* - \mu) \end{pmatrix} = \vec{\mathbf{m}}(\mathbf{p}) \cdot \widehat{\vec{\boldsymbol{\tau}}}$$

$$\vec{\mathbf{m}} = (cp_x, \mp cp_y, \xi(\mathbf{p}))$$
 with $|\vec{\mathbf{m}}(\mathbf{p})|^2 = (|\mathbf{p}|^2/2m - \mu)^2 + c^2|\mathbf{p}|^2 > 0, \mu \neq 0$

Topological Invariant for 2D chiral SC \leftrightarrow QED in d = 2+1 [G.E. Volovik, JETP 1988]:

$$N_{\rm 2D} = \pi \int \frac{d^2p}{(2\pi)^2} \, \hat{\mathbf{m}}(\mathbf{p}) \cdot \left(\frac{\partial \hat{\mathbf{m}}}{\partial p_x} \times \frac{\partial \hat{\mathbf{m}}}{\partial p_y} \right) = \left\{ \begin{array}{c} \pm 1 \\ 0 \, ; \end{array} \right. \quad \frac{\mu > 0 \, \mathrm{and} \, \Delta \neq 0}{\mu < 0 \, \mathrm{or} \, \Delta = 0}$$

"Vacuum" (
$$\Delta=0$$
) with $N_{2D}=0$ He-A ($\Delta\neq 0$) with $N_{2D}=1$

Zero Energy Fermions

Confined on the Edge

Determination of the Electron Bubble Radius

(i) Energy required to create a bubble:

$$E(R,P) = E_0(U_0,R) + 4\pi R^2 \gamma + \frac{4\pi}{3} R^3 P$$
, P – pressure

- (ii) For $U_0 \to \infty$: $E_0 = -U_0 + \pi^2 \hbar^2 / 2 m_e R^2 {\rm ground\ state\ energy}$
- (iii) Surface Energy: hydrostatic surface tension $\leadsto \gamma = 0.15\,\mathrm{erg/cm^2}$
- (iv) Minimizing E w.r.t. $R \rightsquigarrow P = \pi \hbar^2 / 4m_e R^5 2\gamma / R$
- (v) For zero pressure, P = 0:

$$R = \left(\frac{\pi\hbar^2}{8m_e\gamma}\right)^{1/4} \approx 2.38\,\mathrm{nm} \quad \rightsquigarrow \quad k_fR = 18.67$$
 Transport $\rightsquigarrow k_fR = 11.17$

▶ A. Ahonen et al., J. Low Temp. Phys., 30(1):205228, 1978

Angular momentum of an electron bubble in 3 He-A $(k_fR=11.17)$

$${f L}(T o 0)pprox -\hbar N_{
m bubble}\hat{f l}/2$$
 ; $N_{
m bubble}=n_3\,rac{4\pi}{3}R^3pprox 200\,\,^3$ He atoms

Comparison between Theory and Experiment for the Drag and Transverse Forces

•
$$\mu_{\perp} = e \, \frac{\eta_{\perp}}{\eta_{\perp}^2 + \eta_{\rm AH}^2}$$

$$\begin{aligned} \bullet \quad \mu_{\perp} &= e \, \frac{\eta_{\perp}}{\eta_{\perp}^2 + \eta_{\mathrm{AH}}^2} \\ \bullet \quad \mu_{\mathrm{AH}} &= -e \, \frac{\eta_{\mathrm{AH}}}{\eta_{\perp}^2 + \eta_{\mathrm{AH}}^2} \end{aligned}$$

•
$$\tan \alpha = \left| \frac{\mu_{\text{AH}}}{\mu_{\perp}} \right| = \frac{\eta_{\text{AH}}}{\eta_{\perp}}$$

• Hard-Sphere Model: $k_f R = 11.17$

▶ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Theoretical Models for the QP-ion potential

•
$$U(r) = \begin{cases} U_0, & r < R, \\ -U_1, & R < r < R', \\ 0, & r > R'. \end{cases}$$

- \rightsquigarrow Hard-Sphere Potential: $U_1 = 0$, R' = R, $U_0 \to \infty$
- $U(x) = U_0 [1 \tanh[(x b)/c]], \quad x = k_f r$
- $U(x) = U_0/\cosh^2[\alpha x^n]$, $x = k_f r$ (Pöschl-Teller-like potential)
- Random phase shifts: $\{\delta_l|\,l=1\dots l_{\max}\}$ are generated with δ_0 is an adjustable parameter
- Parameters for all models are chosen to fit the experimental value of the normal-state mobility, $\mu_N^{\rm exp}=1.7\times 10^{-6}\,m^2/V\cdot s$

Theoretical Models for the QP-ion potential

Label	Potential	Parameters
Model A	hard sphere	$k_f R = 11.17$
Model B	repulsive core & attractive well	$U_0 = 100E_f, U_1 = 10E_f, k_f R' = 11, R/R' = 0.36$
Model C	random phase shifts model 1	$l_{\text{max}} = 11$
Model D	random phase shifts model 2	$l_{\text{max}} = 11$
Model E	Pöschl-Teller-like	$U_0 = 1.01E_f, k_f R = 22.15, \alpha = 3 \times 10^{-5}, n = 4$
Model F	Pöschl-Teller-like	$U_0 = 2E_f, k_f R = 19.28, \alpha = 6 \times 10^{-5}, n = 4$
Model G	hyperbolic tangent	$U_0 = 1.01E_f, k_f R = 14.93, b = 12.47, c = 0.246$
Model H	hyperbolic tangent	$U_0 = 2E_f, k_f R = 14.18, b = 11.92, c = 0.226$
Model I	soft sphere 1	$U_0 = 1.01E_f, k_f R = 12.48$
Model J	soft sphere 2	$U_0 = 2E_f, k_f R = 11.95$

Hard-sphere model with $k_f R = 11.17$ (Model A)

Comparison with Experiment for Models for the QP-ion potential

(i)
$$t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1) t_l^R(E) P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

(i)
$$t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1)t_l^R(E)P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

(ii)
$$t_l^R(E) = -\frac{1}{\pi N_f} e^{i\delta_l} \sin \delta_l$$

(i)
$$t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1)t_l^R(E)P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

(ii)
$$t_l^R(E) = -\frac{1}{\pi N_f} e^{i\delta_l} \sin \delta_l$$

(iii)
$$\frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 |t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)|^2$$

(i)
$$t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1)t_l^R(E)P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

(ii)
$$t_l^R(E) = -\frac{1}{\pi N_f} e^{i\delta_l} \sin \delta_l$$

(iii)
$$\frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 |t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)|^2$$

(iv)
$$\sigma_{\rm N}^{\rm tr} = \int \frac{d\Omega_{\mathbf{k}'}}{4\pi} (1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{k}}') \frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \frac{4\pi}{k_f^2} \sum_{l=0}^{\infty} (l+1) \sin^2(\delta_{l+1} - \delta_l)$$

(i)
$$t_N^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E) = \sum_{l=0}^{\infty} (2l+1)t_l^R(E)P_l(\hat{\mathbf{k}}' \cdot \hat{\mathbf{k}})$$

(ii)
$$t_l^R(E) = -\frac{1}{\pi N_f} e^{i\delta_l} \sin \delta_l$$

(iii)
$$\frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \left(\frac{m^*}{2\pi\hbar^2}\right)^2 |t_{\rm N}^R(\hat{\mathbf{k}}', \hat{\mathbf{k}}; E)|^2$$

(iv)
$$\sigma_{\rm N}^{\rm tr} = \int \frac{d\Omega_{\mathbf{k}'}}{4\pi} (1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{k}}') \frac{d\sigma}{d\Omega_{\mathbf{k}'}} = \frac{4\pi}{k_f^2} \sum_{l=0}^{\infty} (l+1) \sin^2(\delta_{l+1} - \delta_l)$$

$$\text{(v)} \ \ \mu_{\text{N}} = \frac{e}{n_3 p_f \sigma_{\text{N}}^{\text{tr}}}, \quad p_f = \hbar k_f, \quad n_3 = \frac{k_f^3}{3\pi^2}$$

Calculation of LDOS and Current Density

$$\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}', \mathbf{r}, E) = \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}'\mathbf{r}'} e^{-i\mathbf{k}\mathbf{r}} \hat{\mathcal{G}}_{S}^{R}(\mathbf{k}', \mathbf{k}, E)$$

$$\hat{\mathcal{G}}_S^R(\mathbf{k}',\mathbf{k},E) = (2\pi)^3 \hat{G}_S^R(\mathbf{k},E) \delta_{\mathbf{k}',\mathbf{k}} + \hat{G}_S^R(\mathbf{k}',E) \hat{T}_S(\mathbf{k}',\mathbf{k},E) \hat{G}_S^R(\mathbf{k},E)$$

$$\hat{G}_{S}^{R}(\mathbf{k}, E) = \frac{1}{\varepsilon^{2} - E_{\mathbf{k}}^{2}} \begin{pmatrix} \varepsilon + \xi_{k} & -\Delta(\hat{\mathbf{k}}) \\ -\Delta^{\dagger}(\hat{\mathbf{k}}) & \varepsilon - \xi_{k} \end{pmatrix}, \quad \varepsilon = E + i\eta, \quad \eta \to 0^{+}$$

$$N(\mathbf{r}, E) = -\frac{1}{2\pi} \text{Im} \left\{ \text{Tr} \left[\hat{\mathcal{G}}_S^R(\mathbf{r}, \mathbf{r}, E) \right] \right\}$$

$$\mathbf{j}(\mathbf{r}) = \frac{\hbar}{4mi} k_B T \sum_{n=-\infty}^{\infty} \lim_{\mathbf{r} \to \mathbf{r}'} \operatorname{Tr} \left[(\nabla_{\mathbf{r}'} - \nabla_{\mathbf{r}}) \hat{\mathcal{G}}^M(\mathbf{r}', \mathbf{r}, \epsilon_n) \right]$$

$$\hat{\mathcal{G}}_{S}^{R}(\mathbf{r}', \mathbf{r}, E) = \hat{\mathcal{G}}_{S}^{M}(\mathbf{r}', \mathbf{r}, \epsilon_{n}) \Big|_{i\epsilon_{n} \to \varepsilon}, \text{ for } n \ge 0$$

$$\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}, \mathbf{k}', -\epsilon_{n}) = \left[\hat{\mathcal{G}}_{S}^{M}(\mathbf{k}', \mathbf{k}, \epsilon_{n})\right]^{\dagger}$$

The Left Hand of the Electron in Superfluid ³He

Temperature scaling of the Stokes tensor components

• For $1 - \frac{T}{T_c} \rightarrow 0^+$:

$$\frac{\eta_{\perp}}{\eta_{\rm N}} - 1 \propto -\Delta(T) \propto \sqrt{1 - \frac{T}{T_c}}$$

$$\frac{\eta_{\rm AH}}{\eta_{\rm N}} \propto \Delta^2(T) \propto 1 - \frac{T}{T_c}$$

• For $\frac{T}{T_c} \rightarrow 0^+$:

$$rac{\eta_{\perp}}{\eta_{
m N}} \propto \left(rac{T}{T_c}
ight)^2$$

$$rac{\eta_{
m AH}}{\eta_{
m N}} \propto \left(rac{T}{T_c}
ight)^3$$

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x; \varepsilon) = -\frac{1}{\pi} \operatorname{Im} \mathfrak{g}^{\mathsf{R}}(\mathbf{p}, x; \varepsilon)$

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x; \varepsilon) = -\frac{1}{2} \operatorname{Im} \mathfrak{g}^{\mathsf{R}}(\mathbf{p}, x; \varepsilon)$

Pair Time-Reversed Trajectories Spectral Current Density:

$$\vec{J}(\mathbf{p}, x; \varepsilon) = 2N_f \mathbf{v}(\mathbf{p}) \left[N(\mathbf{p}, x; \varepsilon) - N(\mathbf{p}', x; \varepsilon) \right]$$

J. A. Sauls

Chiral Edge Currents

Local Density of States: $N(\mathbf{p},x;\varepsilon)=-\frac{1}{\pi}\operatorname{Im}\mathfrak{g}^{\mathrm{R}}(\mathbf{p},x;\varepsilon)$

Pair Time-Reversed Trajectories

Spectral Current Density:

$$\vec{J}(\mathbf{p}, x; \varepsilon) = 2N_f \mathbf{v}(\mathbf{p}) \left[N(\mathbf{p}, x; \varepsilon) - N(\mathbf{p}', x; \varepsilon) \right]$$

Bound-State Edge Current at x = 0

Chiral Edge Currents

Local Density of States: $N(\mathbf{p}, x; \varepsilon) = -\frac{1}{2} \operatorname{Im} \mathfrak{g}^{\mathsf{R}}(\mathbf{p}, x; \varepsilon)$

Pair Time-Reversed Trajectories

Spectral Current Density:

$$\vec{J}(\mathbf{p}, x; \varepsilon) = 2N_f \mathbf{v}(\mathbf{p}) \left[N(\mathbf{p}, x; \varepsilon) - N(\mathbf{p}', x; \varepsilon) \right]$$

Bound-State Edge Current at x = 0

Continuum Edge Current at $x = 10\xi_0$

Ground-State Current Density:
$$\vec{J}(x) = \int_{-p_f}^{+p_f} \frac{dp_{||}}{p_f} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x; \varepsilon)$$

Bound-State Contribution $(R \gg \xi_{\Delta})$:

$$J_{\varphi}(\mathbf{p}, x; \varepsilon) = 2N_{f} v_{f} \Delta |p_{x}| p_{\varphi} e^{-x/\xi_{\Delta}} \times \left[\delta(\varepsilon - \varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})) - \delta(\varepsilon - \varepsilon_{\mathsf{bs}}(\mathbf{p'}_{||})) \right]$$

Bound-State Edge Current: $\int_0^\infty dx J_\varphi(x)=rac{1}{2}\,n\,\hbar$ Mass Current: $v_f o p_f o ec{J} o ec{q}$

Ground-State Current Density:
$$\vec{J}(x) = \int_{-p_f}^{+p_f} \frac{dp_{||}}{p_f} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x; \varepsilon)$$

Bound-State Contribution $(R \gg \xi_{\Delta})$:

$$\begin{array}{rcl} J_{\varphi}(\mathbf{p},x;\varepsilon) & = & 2N_{f}\,v_{f}\,\Delta\,|p_{x}|\,p_{\varphi}\,e^{-x/\xi_{\Delta}} \\ & \times & \left[\delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p}_{||}))-\delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p'}_{||}))\right] \end{array}$$

Bound-State Edge Current: $\int_0^\infty dx J_\varphi(x)=rac{1}{2}\,n\,\hbar$ Mass Current: $v_f o p_f \leadsto ec J o ec g$

$$ightharpoonup L_z^{
m bs} = \int_V d^2 r \; [r \, g_{arphi}({f r})] = N \, \hbar \; \times 2 \; {
m Too \; Large \; vs. \; MT}$$

Ground-State Current Density:
$$\vec{J}(x) = \int_{-p_f}^{+p_f} \frac{dp_{||}}{p_f} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x; \varepsilon)$$

Bound-State Contribution $(R \gg \xi_{\Delta})$:

$$\begin{array}{rcl} J_{\varphi}(\mathbf{p},x;\varepsilon) & = & 2N_{f}\,v_{f}\,\Delta\,|p_{x}|\,p_{\varphi}\,e^{-x/\xi_{\Delta}} \\ & \times & \left[\delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p}_{||}))-\delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p'}_{||}))\right] \end{array}$$

Bound-State Edge Current: $\int_0^\infty dx J_\varphi(x) = \frac{1}{2} \, n \, \hbar$ Mass Current: $v_f \to p_f \leadsto \vec{J} \to \vec{q}$

$$lackbox{L}_z^{
m bs} = \int_{V} d^2 r \; [r \, g_{arphi}({f r})] \; = N \, \hbar \; \times 2 \; {
m Too \; Large \; vs. \; MT}$$

$$\qquad \qquad \blacktriangleright \text{ Continuum } (\varepsilon < -\Delta) : \quad J_{\varphi}^{\mathsf{C}} = 2N_f \, v_f \, |p_x| \, \left(\frac{\Delta^2 \, p_{\varphi}^2}{\varepsilon^2 - \varepsilon_{\mathsf{bs}}^2(\mathbf{p}_{||})} \right) \quad \sin \left(2 \sqrt{\varepsilon^2 - \Delta^2} \, x / v_x \right)$$

Ground-State Current Density:
$$\vec{J}(x) = \int_{-p_f}^{+p_f} \frac{dp_{||}}{p_f} \int_{-\infty}^{0} \vec{J}(\mathbf{p}, x; \varepsilon)$$

Bound-State Contribution $(R \gg \xi_{\Delta})$:

$$\begin{array}{lcl} J_{\varphi}(\mathbf{p},x;\varepsilon) & = & 2N_f\,v_f\,\Delta\,|p_x|\,p_{\varphi}\,e^{-x/\xi_{\Delta}} \\ & \times & \left[\delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})) - \delta(\varepsilon-\varepsilon_{\mathsf{bs}}(\mathbf{p'}_{||}))\right] \end{array}$$

Bound-State Edge Current: $\int_0^\infty dx J_\varphi(x)=rac{1}{2}\,n\,\hbar$ Mass Current: $v_f o p_f \leadsto ec J o ec g$

Thermally Excited Edge Fermions Carry the Opposite Current

Angular Momentum of ³He-A vs. Temperature

$$J = rac{1}{4} \, n \, \hbar \, imes \, \mathcal{Y}_{\mathsf{edge}}(T)$$
 $\qquad \mathcal{Y}_{\mathsf{edge}}(T) pprox 1 - \frac{c \, (T/\Delta)^2}{c \, (T/\Delta)^2} \; , \quad T \ll \Delta$

▶ Thermal Signature of the Chiral Edge States

$$\rho_s(T)/\rho = \mathcal{Y}_{\text{bulk}}(T) - 1 \propto -\frac{e^{-\Delta/T}}{e}, \quad T \ll \Delta$$

▶ JAS, Phys. Rev. B 84, 214509 (2011)

Y. Tsutsumi et al., PRB 85, 100506(R) (2012)

Ground-State Angular Momentum of ³He-A in a Toroidal Geometry

³He-A confined in a toroidal cavity

- Sheet Current: $J=\frac{1}{4}\,n\,\hbar\,\,\,(n=N/V={}^3{
 m He}\,\,{
 m density})$
- Counter-propagating Edge Currents: $J_1 = -J_2 = \frac{1}{4} n \, \hbar$
- Angular Momentum:

J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

Robustness of Edge Currents vs Edge States

Magnitude of Edge Currents are Protected by Symmetry

Specular Reflection

Propagating Chiral Fermions:

$$\mathfrak{g}^{\mathsf{R}}(\mathbf{p},\varepsilon;x) = \frac{\pi\Delta|\mathbf{p}_x|}{\varepsilon + i\gamma - \varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})}\,e^{-x/\xi_\Delta}$$
 Edge Current: $J = \frac{1}{4}\,n\,\hbar$

Specular Reflection

Propagating Chiral Fermions:

$$\mathfrak{g}^{\mathsf{R}}(\mathbf{p},\varepsilon;x) = \frac{\pi\Delta|\mathbf{p}_x|}{\varepsilon + i\gamma - \varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})}\,e^{-x/\xi_\Delta}$$
 Edge Current: $J = \frac{1}{4}\,n\,\hbar$

Specular Reflection

Propagating Chiral Fermions:

$$\mathfrak{g}^{\mathsf{R}}(\mathbf{p},\varepsilon;x) = \frac{\pi\Delta|\mathbf{p}_x|}{\varepsilon + i\gamma - \varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})}\,e^{-x/\xi_\Delta}$$
 Edge Current: $J = \frac{1}{4}\,n\,\hbar$

Specular Reflection

Propagating Chiral Fermions:

$$\begin{split} \mathfrak{g}^{\mathsf{R}}(\mathbf{p},\varepsilon;x) &= \frac{\pi\Delta|\mathbf{p}_x|}{\varepsilon + i\gamma - \varepsilon_{\mathsf{bs}}(\mathbf{p}_{||})}\,e^{-x/\xi_\Delta} \\ &\quad \mathsf{Edge Current:} \ J = \frac{1}{4}\,n\,\hbar \end{split}$$

Retro Reflection

Zero-Energy Fermions for all \mathbf{p} : $\mathfrak{g}^{\mathsf{R}}(\mathbf{p},\varepsilon;x) = \frac{\pi\Delta}{\varepsilon + i\gamma}\,e^{-2\Delta x/v_x}$ \leadsto Edge Current: J=0

- Sheet Current: $J = f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces $0 \le f \le 1$

- Sheet Current: $J = f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces 0 < f < 1

Incomplete Screening of Counter-Propagating Currents

Scaling of
$$L_z$$
 with $r = (R_2/R_1)^2$ $0 < r < 1$

- Sheet Current: $J = f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces $0 \le f \le 1$

Incomplete Screening of Counter-Propagating Currents

Scaling of
$$L_z$$
 with $r = (R_2/R_1)^2$ $0 < r < 1$

$$f_1 = 1, f_2 = 0$$

$$L_z = (N/2) \, \hbar \times \left(\frac{1}{1-r}\right) \gg (N/2) \, \hbar$$

- Sheet Current: $J = f \times \frac{1}{4} n \hbar$
- Non-Specular Surfaces 0 < f < 1

Incomplete Screening of Counter-Propagating Currents

Scaling of
$$L_z$$
 with $r = (R_2/R_1)^2$ $0 < r < 1$

$$f_1 = 1, f_2 = 0$$

$$\mathcal{L}_z = (N/2) \, \hbar \times \left(\frac{1}{1-r} \right) \gg (N/2) \, \hbar$$

$$f_1 = 0, f_2 = 1$$

$$L_z = (N/2) \, \hbar \times \left(\frac{1}{1-r}\right) \gg (N/2) \, \hbar \qquad \qquad L_z = (N/2) \, \hbar \times \left(\frac{-r}{1-r}\right) \ll -(N/2) \, \hbar$$

Strong violations of the McClure-Takagi Result

▶ Mesoscopic geometries: Edge states are important for transport

- Surface states, edge currents, and the angular momentum of chiral p-wave superfluids and superconductors, JAS, Phys. Rev. B 84, 214509 (2011) [arXiv:1209.5501]
- Symmetry Protected Topological Superfluids and Superconductors From the Basics to ³He,
 - T. Mizushima, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida [arXiv:1508.00787]