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Parity Violation in Beta Decay of 60Co - Physical Review 105, 1413 (1957)

LETTERS TO TH E E D I TOR 1413

The branching ratio of the two modes of decay of Fm'",
i.e., E.C./n, was found to be about 8.5—which gives

89.5% decay by electron capture and 10.5% by
alpha emission. It was not possible to measure the
cross section for the Cf'"(n, 3n)Fm'" reaction because
Fm'" could also be produced from other californium
isotopes in the target.

A previous publication4 on a possible identification
of the Fm'" gave the values of 6.85&0.04 Mev for
the alpha-particle energy, and a half-life &10 days.

It is a pleasure to thank the crew of the 60-inch
cyclotron for their extremely careful and skillful oper-
ation of the machine during the bombardment. We
wish to thank Professor Glenn T. Seaborg for his
continued interest.

* On leave from the Israel Atomic Energy Commission, Weiz-
mann Institute of Science, Rehovoth, Israel.
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' 'N a recent paper' on the question of parity in weak
~ - interactions, Lee and Yang critically surveyed the
experimental information concerning this question and
reached the conclusion that there is no existing evidence
either to support or to refute parity conservation in weak
interactions. They proposed a number of experiments on
beta decays and hyperon and meson decays which would
provide the necessary evidence for parity conservation
or nonconservation. In beta decay, one could measure
the angular distribution of the electrons coming from
beta decays of polarized nuclei. If an asymmetry in the
distribution between 8 and 180'—8 (where 8 is the angle
between the orientation of the parent nuclei and the
momentum of the electrons) is observed, it provides
unequivocal proof that parity is not conserved in beta
decay. This asymmetry effect has been observed in the
case of oriented Co~.

It has been known for some time that Co" nuclei can
be polarized by the Rose-Gorter method in cerium
magnesium (cobalt) nitrate, and the degree of polari-
zation detected by measuring the anisotropy of the
succeeding gamma rays. ' To apply this technique to the
present problem, two major difhculties had to be over-

No

~Ocm —LUCITE ROD

~PUMPING TUBE FOR
VACUUM SPACE

4I.5

—RE-ENTRANT
VACUUM SPACE

MUTUAL INDUCTANCE
THERMOMETER COILS~

SPECIMEN~
HOUSING OF
Ce Mg NITRATE

ANTHRACENE CRYSTALr
46 cm

Nal

FrG. 1. Schematic drawing of the lower part of the cryostat.

come. The beta-particle counter should be placedi~side
the demagnetization cryostat, and the radioactive
nuclei must be located in a thin surface layer and
polarized. The schematic diagram of the cryostat is
shown in Fig. 1.

To detect beta particles, a thin anthracene crystal
—,'in. in diameter)& —,'6 in. thick is located inside the
vacuum chamber about 2 cm above the Co~ source.
The scintillations are transmitted through a glass
window and a Lucite light pipe 4 feet long to a photo-
multiplier (6292) which is located at the top of the
cryostat. The Lucite head is machined to a logarithmic
spiral shape for maximum light collection. Under this
condition, the Cs"' conversion line (624 kev) still
retains a resolution of 17%. The stability of the beta
counter was carefully checked for any magnetic or
temperature effects and none were found. To measure
the amount of polarization of Co", two additional NaI
gamma scintillation counters were installed, one in
the equatorial plane and one near the polar
position. The observed gamma-ray anisotropy was
used as a measure of polarization, and, effectively,
temperature. The bulk susceptibility was also mon-
itored but this is of secondary significance due
to surface heating effects, and the gamma-ray ani-
sotropy alone provides a reliable measure of nuclear
polarization. Specimens were made by taking good
single crystals of cerium magnesium nitrate and growing
on the upper surface only an additional crystalline layer
containing Co".One might point out here that since the
allowed beta decay of Co~ involves a change of spin of

I T. D. Lee and C. N. Yang, Phys Rev 104, 204 (1956)
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FIG. 2. Gamma anisotropy and beta asymmetry for
polarizing field pointing up and pointing down.

one unit and no change of parity, it can be given only
by the Gamow-Teller interaction. This is almost im-
perative for this experiment. The thickness of the
radioactive layer used was about 0.002 inch and con-
tained a few microcuries of activity. Upon demagnetiza-
tion, the magnet is opened and a vertical solenoid is
raised around the lower part of the cryostat. The
whole process takes about 20 sec. The beta and gamma
counting is then started. The beta pulses are analyzed
on a 10-channel pulse-height analyzer with a counting
interval of 1 minute, and a recording interval of about
40 seconds. The two gamma counters are biased to
accept only the pulses from the photopeaks in order to
discriminate against pulses from Compton scattering.

A large beta asymmetry was observed. In Fig. 2 we
have plotted the gamma anisotropy and beta asym-
metry vs time for polarizing field pointing up and
pointing down. The time for disappearance of the beta
asymmetry coincides well with that of gamma ani-
sotropy. The warm-up time is generally about 6 minutes,
and the warm counting rates are independent of the
field direction. The observed beta asymmetry does not
change sign with reversal of the direction of the de-
magnetization field, indicating that it is not caused by
remanent magnetization in the sample.

The sign of the asymmetry coeAicient, o., is negative,
that is, the emission of beta particles is more favored in
the direction opposit. e to that of the nuclear spin. This
naturally implies that the sign for Cr and Cr' (parity
conserved and pa. rity not conserved) must be opposite.
The exact evaluation of o. is difficult because of the
many eA'ects involved. The lower limit of n can be
estimated roughly, however, from the observed value
of asymmetry corrected for backscattering. AL velocity
v(c=0.6, the value of n is about 0.4. The value of
(I,)/I can be calculated from the observed anisotropy
of the gamma radiation to be about 0.6. These two
quantities give the lower limit of the asymmetry
parameter P(n P(=I,)/I) approximately equal to 0.7.
In order to evaluate o, accurately, many supplementary
experiments must be carried out to determine the
various correction factors. It is estimated here only to
show the large asymmetry effect. According to I-ee and
Yang' the present experiment indicates not only that
conservation of parity is violated but also that invari-
ance under charge conjugation is violated. 4 Further-
more, the invariance under time reversal can also be
decided from the momentum dependence of the asym-
metry parameter P. This effect will be studied later.

The double nitrate cooling salt has a highly aniso-
tropic g value. If the symmetry axis of a crysial is not
set parallel to the polarizing field, a small magnetic
field vill be produced perpendicular to the latter. To
check whether the beta asymmetry could be caused by
such a magnetic field distortion, we allowed a drop of
CoC12 solution to dry on a thin plastic disk and cemented
the disk to the bottom of the same housing. In this way
the cobalt nuclei should not be cooled su%ciently to
produce an appreciable nuclear polarization, whereas
the housing will behave as before. The large beta asym-
mef. ry was not observed. Furthermore, to investigate
possible internal magnetic effects on the paths of the
electrons as they find their way to the surface of the
crystal, we prepared another source by rubbing CoC1&

solution on the surface of the cooling salt until a
reasonable amount of the crystal was dissolved. AVe then
allowed the solution to dry. No beta asymmetry was
observed with this specimen.

3lore rigorous experimental checks are being initi-

ated, but in view of the important implications of these
observations, we report them now in the hope that they
Diay stimulate and encourage further experimental
investigations on the parity question in either beta or
hyperon and meson decays.

The inspiring discussions held with Professor T. D.
Lee and Professor C. N. Yang by one of us (C. S. Ku)
are gratefully acknowledged.

* YVork partially supported by the U. S. Atomic Energy
Commission.

' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
~ Ambler, Grace, Halban, Kurti, Durand, and Johnson, Phil.

Mag. 44, 216 (1953).' Lee, Oehme, and Yang, Phys. Rev. (to be published' ).

I Current of Beta electrons is (anti)
correlated with the Spin of the 60Co nucleus.

〈~S · ~p〉 6= 0 Parity violation
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the cobalt nuclei should not be cooled su%ciently to
produce an appreciable nuclear polarization, whereas
the housing will behave as before. The large beta asym-
mef. ry was not observed. Furthermore, to investigate
possible internal magnetic effects on the paths of the
electrons as they find their way to the surface of the
crystal, we prepared another source by rubbing CoC1&

solution on the surface of the cooling salt until a
reasonable amount of the crystal was dissolved. AVe then
allowed the solution to dry. No beta asymmetry was
observed with this specimen.

3lore rigorous experimental checks are being initi-

ated, but in view of the important implications of these
observations, we report them now in the hope that they
Diay stimulate and encourage further experimental
investigations on the parity question in either beta or
hyperon and meson decays.

The inspiring discussions held with Professor T. D.
Lee and Professor C. N. Yang by one of us (C. S. Ku)
are gratefully acknowledged.

* YVork partially supported by the U. S. Atomic Energy
Commission.
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I Current of Beta electrons is (anti)
correlated with the Spin of the 60Co nucleus.

〈~S · ~p〉 6= 0 Parity violation
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Parity Violation in a Superfluid Vacuum of Liquid 3He

Chiral P-wave BCS Condensate

|ΦN 〉 =

[∫∫
dr1dr2 ϕs1s2(r1 − r2) ψ†s1(r1)ψ†s2(r2)

]N/2
| vac 〉

ϕs1s2(r) = f(|r|/ξ) (x+ iy) χs1s2
I P.W. Anderson & P. Morel, Phys. Rev. 123, 1911 (1961)

SO(3)S × SO(3)L × U(1)N × T × P −→ SO(2)S × U(1)N-Lz
× Z2

Realized in the Superfluid Ground State of Liquid 3He
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The 3He Paradigm: Maximal Symmetry G = SO(3)S × SO(3)L × U(1)N × P× T

BCS Condensate Amplitude : Ψαβ(p) = 〈ψα(p)ψβ(−p)〉

J. Wiman & J. A. Sauls, PRB 92, 144515 (2015)
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Signatures of Broken T and P Symmetry in 3He-A

What is the Signature & Evidence for Chirality of Superfluid 3He-A?

Spontaneous Symmetry Breaking  Emergent Topology of 3He-A

Chirality + Topology  Edge States & Chiral Edge Currents

Broken T and P  Anomalous Hall Effect for electrons in 3He-A
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Real-Space vs. Momentum-Space Topology

Topology in Real Space
Ψ(r) = |Ψ(r)| eiϑ(r)

C

Phase Winding

NC =
1

2π

∮
C

d~l· 1

|Ψ| Im[∇Ψ] ∈ {0,±1,±2, . . .}

I Massless Fermions confined in the
Vortex Core

Chiral Symmetry  
Topology in Momentum Space

Ψ(p) = ∆(px ± ipy) ∼ e±iϕp
Topological Quantum Number: Lz = ±1

N2D =
1

2π

∮
dp· 1

|Ψ(p)| Im[∇pΨ(p)] = Lz

I Massless Chiral Fermions
I Nodal Fermions in 3D
I Edge Fermions in 2D
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Ground-State Angular Momentum of 3He-A in a Toroidal Geometry

3He-A confined in a toroidal cavity

J2
J1

R1

R2
D

w R1, R2, R1 −R2 � ξ0

Sheet Current: J =
1

4
n ~ (n = N/V = 3He density)

Counter-propagating Edge Currents: J1 = −J2 =
1

4
n ~

Angular Momentum:

Lz = 2π h (R2
1 −R2

2)× 1

4
n ~ = (N/2) ~ McClure-Takagi Result

I J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
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Long-Standing Challenge: The Ground-State Angular Momentum of 3He-A

Possible Gyroscopic Experiment to Measure of Lz(T )
I Hyoungsoon Choi (KAIST) [sub-micron mechanical gyroscope @ 200 µK]

TOR SION
FIBER

MAGNETIC AXIS
FIELD

SUPERF LUID
PERSISTENT

ENT

APPLIED ROTATIONAL
VELOCITY

Lp

PERSISTENT CURRENT
ANGULAR MOMENTUM

SUPERFLUID GYROSCOPE
v=uxL

J. Clow and J.  Reppy, Phys. Rev. A 5, 424–438 

Dissipationless
Chiral Edge 

Currents

Equilibrium
Angular Momentum

Non-Specular Edge

Specular Edge

Thermal Signature of Chiral Edge States

IPower Law for T . 0.5Tc

Lz = (N/2)~ (1− c (T/∆)2 )

Toroidal Geometry with Engineered Surfaces

I Incomplete Screening

Lz > (N/2)~

Direct Signature of Edge Currents

I J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

I Y. Tsutsumi, K. Machida, JPSJ 81, 074607 (2012)
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Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid

Unbounded Film of 3He-A perforated by a Hole

y

z

J

x

l
^

~ (p  + i p )

R

∆
x y

R� ξ0 ≈ 100 nm

Magnitude of the Sheet Current:
1

4
n ~ (n = N/V = 3He density)

Edge Current Counter-Circulates: J = −1

4
n ~ w.r.t. Chirality: l̂ = +z

Angular Momentum: Lz = 2π hR2 × (−1

4
n ~) = −(Nhole/2) ~

Nhole = Number of 3He atoms excluded from the Hole

∴ An object in 3He-A inherits angular momentum from the Condensate of Chiral Pairs!
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Electron bubbles in the Normal Fermi liquid phase of 3He

Bubble with R ' 1.5 nm,
0.1 nm ' λf � R� ξ0 ' 80 nm

Effective mass M ' 100m3

(m3 – atomic mass of 3He)

QPs mean free path l� R

Mobility of 3He is independent of T for
Tc < T < 50 mK

B. Josephson and J. Leckner, PRL 23, 111 (1969)
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Electron bubbles in chiral superfluid 3He-A

∆A(k̂) = ∆
kx + iky
kf

= ∆ eiφk

Current: v =

vE︷︸︸︷
µ⊥E +

vAH︷ ︸︸ ︷
µAHE × l̂ R. Salmelin, M. Salomaa & V. Mineev, PRL 63, 868 (1989)

Hall ratio: tanα = vAH/vE = |µAH/µ⊥|
J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Detection of Broken Time-Reversal Symmetry in 3He-A

electron 
bubbles

f = 0.06 – 6 Hz
Vin = 0.1 – 1 V

Measurement of the Transverse e- mobility in 
Superfluid 3He Films

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

left electrode

right electrode

electron 
bubbles

f = 0.06 – 6 Hz
Vin = 0.1 – 1 V

�v =

�
µ⊥ �E + µxy �̂× �E

�

Measurement of the Transverse e- mobility in 
Superfluid 3He Films

��=−ẑ

Transverse Force from Skew Scattering
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��=+ẑ

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)
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|IR − IL|
IR + IL

≈ 6%

Transverse e- bubble current in 3He-A

Single Domains:

Run 1

Tc

Tc

Run 2

H. Ikegami, Y. Tsutsumi, K. Kono, Science 341, 59-62 (2013)

 Zero Transverse e- current in 3He-B (T - symmetric phase)
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Mobility of Electron Bubbles in 3He-A

I H. Ikegami et al., Science 341, 59 (2013); JPSJ 82, 124607 (2013); JPSJ 84, 044602 (2015)

Electric current: v =

vE︷︸︸︷
µ⊥E +

vAH︷ ︸︸ ︷
µAHE × l̂ Hall ratio: tanα = vAH/vE = |µAH/µ⊥|

ta
nα
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Forces on the Electron bubble in 3He-A:

M
dv

dt
= eE + FQP, FQP – force from quasiparticle collisions

FQP = −↔η · v,
↔
η – generalized Stokes tensor

↔
η =

 η⊥ ηAH 0

− ηAH η⊥ 0

0 0 η‖

 for chiral symmetry with l̂ ‖ ez

M
dv

dt
= eE − η⊥v +

e

c
v × Beff , for E ⊥ l̂

Beff = −c
e
ηAHl̂ Beff ' 103 − 104 T !!!

dv

dt
= 0  v =

↔
µE, where

↔
µ = e

↔
η
−1

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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T-matrix description of Quasiparticle-Ion scattering

I Lippmann-Schwinger equation for the T -matrix (ε = E + iη ; η → 0+):

T̂RS (k′,k, E)= T̂RN (k′,k) +

∫
d3k′′

(2π)3
T̂RN (k′,k′′)

[
ĜRS (k′′, E)− ĜRN (k′′, E)

]
T̂RS (k′′,k, E)

ĜRS (k, E) =
1

ε2 − E2
k

 ε+ ξk −∆(k̂)

−∆†(k̂) ε− ξk

, Ek =

√
ξ2
k + |∆(k̂)|2, ξk =

~2k2

2m∗
− µ

I Normal-state T -matrix:

T̂RN (k̂′, k̂) =

(
tRN (k̂′, k̂) 0

0 −[tRN (−k̂′,−k̂)]†

)
in p-h (Nambu) space

, where

tRN (k̂′, k̂) = − 1

πNf

∞∑
l=0

(2l + 1)eiδl sin δlPl(k̂
′ · k̂), Pl(x) – Legendre function

I Hard-sphere potential  tan δl = jl(kfR)/nl(kfR) – spherical Bessel functions

I kfR – determined by the Normal-State Mobility
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Calculation of LDOS and Current Density

ĜRS (r′, r, E) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
eik
′r′e−ikrĜRS (k′,k, E)

ĜRS (k′,k, E) = (2π)3ĜRS (k, E)δk′,k + ĜRS (k′, E)T̂S(k′,k, E)ĜRS (k, E)

ĜRS (k, E) =
1

ε2 − E2
k

(
ε+ ξk −∆(k̂)

−∆†(k̂) ε− ξk

)
, ε = E + iη, η → 0+

N(r, E) = − 1

2π
Im
{

Tr
[
ĜRS (r, r, E)

]}

j(r) =
~

4mi
kBT

∞∑
n=−∞

lim
r→r′

Tr
[
(∇r′ −∇r)ĜM (r′, r, εn)

]
ĜRS (r′, r, E) = ĜMS (r′, r, εn)

∣∣∣
iεn→ε

, for n ≥ 0

ĜMS (k,k′,−εn) =
[
ĜMS (k′,k, εn)

]†
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Weyl Fermion Spectrum bound to the Electron Bubble

µN =
e

n3pfσtr
N

⇐ µexp
N = 1.7× 10−6 m

2

V s

tan δl = jl(kfR)/nl(kfR) ⇒ σtr
N =

4π

k2
f

∞∑
l=0

(l + 1) sin2(δl+1 − δl)  kfR = 11.17

N(r, E) =

lmax∑
m=−lmax

Nm(r, E), lmax ' kfR
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Current density bound to an electron bubble (kfR = 11.17)

=⇒
y

z

J

x

l
^

~ (p  + i p )

R

∆
x y

j(r)/vfNfkBTc = jφ(r)êφ =⇒ L(T → 0) ≈ −~Nbubble l̂/2

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Determination of the Stokes Tensor from the QP-Ion T-matrix

(i) Fermi’s golden rule and the QP scattering rate:

Γ(k′,k) =
2π

~
W (k̂′, k̂)δ(Ek′ − Ek),

W (k̂′, k̂) =
1

2

∑
τ ′σ′;τσ

|

outgoing︷ ︸︸ ︷
〈k′, σ′, τ ′ | T̂S

incoming︷ ︸︸ ︷
|k, σ, τ 〉 |2

(ii) Drag force from QP-ion collisions (linear in v): I Baym et al. PRL 22, 20 (1969)

FQP = −
∑
k,k′

~(k′ − k)

[
~k′vfk

(
−∂fk′
∂E

)
− ~kv(1− fk′)

(
−∂fk
∂E

)]
Γ(k′,k)

(iii) Microscopic reversibility condition: W (k̂′, k̂ : +l) = W (k̂, k̂′ : −l)

Broken T and mirror symmetries in 3He-A ⇒ fixed l̂  W (k̂′, k̂) 6= W (k̂, k̂′)

(iv) Generalized Stokes tensor:

FQP = −↔η · v  ηij = n3pf

∫ ∞
0

dE

(
−2

∂f

∂E

)
σij(E)

,
↔
η =

 η⊥ ηAH 0
−ηAH η⊥ 0

0 0 η‖


n3 =

k3
f

3π2
– 3He particle density, σij(E) – transport scattering cross section,

f(E) = [exp(E/kBT ) + 1]−1 – Fermi Distribution
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Mirror-symmetric scattering ⇒ longitudinal drag force

FQP = −↔η · v, ηij = n3pf

∫ ∞
0

dE

(
−2

∂f

∂E

)
σij(E)

Subdivide by mirror symmetry:

W (k̂′, k̂) = W (+)(k̂′, k̂) +W (−)(k̂′, k̂),

σij(E) = σ
(+)
ij (E) + σ

(−)
ij (E),

σ
(+)
ij (E)=

3

4

∫
E≥|∆(k̂′)|

dΩk′

∫
E≥|∆(k̂)|

dΩk

4π
[(k̂′i − k̂i)(k̂

′
j − k̂j)]

dσ(+)

dΩk′
(k̂′, k̂;E)

Mirror-symmetric cross section: W (+)(k̂′, k̂) = [W (k̂′, k̂) +W (k̂, k̂′)]/2

dσ(+)

dΩk′
(k̂′, k̂;E) =

(
m∗

2π~2

)2
E√

E2 − |∆(k̂′)|2
W (+)(k̂′, k̂)

E√
E2 − |∆(k̂)|2

 Stokes Drag η(+)
xx = η(+)

yy ≡ η⊥, η(+)
zz ≡ η‖ , No transverse force

[
η

(+)
ij

]
i 6=j

= 0
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Mirror-antisymmetric scattering ⇒ transverse force

FQP = −↔η · v, ηij = n3pf

∫ ∞
0

dE

(
−2

∂f

∂E

)
σij(E)

Subdivide by mirror symmetry:

W (k̂′, k̂) = W (+)(k̂′, k̂) + W (−)(k̂′, k̂) ,

σij(E) = σ
(+)
ij (E) + σ

(−)
ij (E) ,

σ
(−)
ij (E)=

3

4

∫
E≥|∆(k̂′)|

dΩk′

∫
E≥|∆(k̂)|

dΩk

4π
[εijk(k̂′ × k̂)k]

dσ(−)

dΩk′
(k̂′, k̂;E)

[
f(E)− 1

2

]

Mirror-antisymmetric cross section: W (−)(k̂′, k̂) = [W (k̂′, k̂)−W (k̂, k̂′)]/2

dσ(−)

dΩk′
(k̂′, k̂;E) =

(
m∗

2π~2

)2
E√

E2 − |∆(k̂′)|2
W (−)(k̂′, k̂)

E√
E2 − |∆(k̂)|2

Transverse force η(−)
xy = −η(−)

yx ≡ ηAH ⇒ anomalous Hall effect

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Differential cross section for Bogoliubov QP-Ion Scattering kfR = 11.17

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Theoretical Results for the Drag and Transverse Forces
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H
/η

N
∆px ≈ pf σtr

xx ≈ σtr
N ≈ πR2

Fx ≈ n vx ∆px σ
tr
xx

≈ n vx pf σtr
N

∆py ≈ ~ /R σtr
xy ≈ (∆(T )/kBTc)

2σtr
N

Fy ≈ n vx ∆py σ
tr
xy

≈ n vx (~/R)σtr
N(∆(T )/kBTc)

2

|Fy/Fx| ≈
~
pfR

(∆(T )/kBTc)
2 kfR = 11.17

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Comparison between Theory and Experiment for the Drag and Transverse Forces
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tanα =

∣∣∣∣µAH

µ⊥
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ηAH

η⊥

Hard-Sphere Model:
kfR = 11.17

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Summary

Electrons in 3He-A are “dressed” by a spectrum of Weyl Fermions

Electrons in 3He-A are “Left handed” in a Right-handed Chiral Vacuum
 Lz ≈ −(Nbubble/2)~ ≈ −100 ~

Experiment: RIKEN mobility experiments  Observation an AHE in 3He-A

Scattering of Bogoliubov QPs by the dressed Ion

 Drag Force (−η⊥v) and Transverse Force (
e

c
v ×Beff ) on the Ion

Anomalous Hall Field: Beff ≈
Φ0

3π2
k2
f (kfR)2

(
ηAH

ηN

)
l ' 103 − 104 T l

Mechanism: Skew/Andreev Scattering of Bogoliubov QPs by the dressed Ion

Origin: Broken Mirror & Time-Reversal Symmetry  W (k,k′) 6= W (k′,k)

Theory:  Quantitative account of RIKEN mobility experiments

Ongoing: New directions for Transport in 3He-A & Chiral Superconductors

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Broken time-reversal (T) & mirror (Πm) symmetries for Chiral Superfluids

(1) Broken TRS: Tl̂ = −l̂

(2) Broken mirror symmetry: Πm l̂ = −l̂

(3) Chiral symmetry: C = T×Πm

(4) Microscopic reversibility for chiral superfluids: W (k̂′, k̂; l̂) = W (k̂, k̂′;−l̂)

(5) ∴ For BTRS: the chiral axis l̂ is fixed  W (k̂′, k̂) 6= W (k̂, k̂′)

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Confinement: Superfluid Phases of 3He in Thin Films

Symmetry or Normal Liquid 3He : G = SO(3)S × SO(2)L × U(1)N × P× T

I Length Scale for Strong Confinement:

ξ0 = ~vf/2πkBTc ≈ 20− 80 nm

A. Vorontsov & JAS, PRL, 2007
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 Momentum-Space Topology of Nambu-Bogoliubov Hamiltonian

Hamiltonian for quasi-2D Chiral Superconductor (Sr2RuO4 & 3He-A Film):

Ĥ =

(|p|2/2m∗ − µ) c(px + ipy)

c(px − ipy) −(|p|2/2m∗ − µ)

 = ~m(p) · ~̂τ

~m = ( cpx , ∓cpy , ξ(p)) with | ~m(p)|2 =
(
|p|2/2m− µ

)2
+ c2|p|2 > 0 , µ 6= 0

Topological Invariant for 2D chiral SC ↔ QED in d = 2+1 [G.E. Volovik, JETP 1988]:

N2D = π

∫
d2p

(2π)2
m̂(p) ·

(
∂m̂

∂px
× ∂m̂

∂py

)
=

{
±1 ; µ > 0 and ∆ 6= 0

0 ; µ < 0 or ∆ = 0

“Vacuum” (∆ = 0) with N2D = 0

∣∣∣∣∣ 3He-A (∆ 6= 0) withN2D = 1

Zero Energy Fermions ↑ Confined on the Edge
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Determination of the Electron Bubble Radius

(i) Energy required to create a bubble:

E(R,P ) = E0(U0, R) + 4πR2γ +
4π

3
R3P , P – pressure

(ii) For U0 →∞:

E0 = −U0 + π2~2/2meR
2 – ground state energy

(iii) Surface Energy: hydrostatic surface tension  γ = 0.15 erg/cm2

(iv) Minimizing E w.r.t. R  P = π~2/4meR
5 − 2γ/R

(v) For zero pressure, P = 0:

R =

(
π~2

8meγ

)1/4

≈ 2.38 nm  kfR = 18.67

Transport  kfR = 11.17

I A. Ahonen et al., J. Low Temp. Phys., 30(1):205228, 1978
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Angular momentum of an electron bubble in 3He-A (kfR = 11.17)

L(T → 0) ≈ −~Nbubblêl/2 ; Nbubble = n3
4π

3
R3 ≈ 200 3He atoms
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Comparison between Theory and Experiment for the Drag and Transverse Forces
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µ
⊥
/µ

N
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δ l
[π

]

µ⊥ = e
η⊥

η2
⊥ + η2

AH

µAH = −e ηAH

η2
⊥ + η2

AH

tanα =

∣∣∣∣µAH

µ⊥

∣∣∣∣ =
ηAH

η⊥

Hard-Sphere Model:
kfR = 11.17

I O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)
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Theoretical Models for the QP-ion potential

U(r) =


U0, r < R,

−U1, R < r < R′,

0, r > R′.

 Hard-Sphere Potential: U1 = 0, R′ = R, U0 →∞

U(x) = U0 [1− tanh[(x− b)/c]], x = kfr

U(x) = U0/ cosh2[αxn], x = kfr (Pöschl-Teller-like potential)

Random phase shifts: {δl| l = 1 . . . lmax} are generated with δ0 is an
adjustable parameter

Parameters for all models are chosen to fit the experimental value of
the normal-state mobility, µexp

N = 1.7× 10−6m2/V · s

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Theoretical Models for the QP-ion potential

Label Potential Parameters

Model A hard sphere kfR = 11.17

Model B repulsive core & attractive well U0 = 100Ef , U1 = 10Ef , kfR
′ = 11, R/R′ = 0.36

Model C random phase shifts model 1 lmax = 11

Model D random phase shifts model 2 lmax = 11

Model E Pöschl-Teller-like U0 = 1.01Ef , kfR = 22.15, α = 3× 10−5, n = 4

Model F Pöschl-Teller-like U0 = 2Ef , kfR = 19.28, α = 6× 10−5, n = 4

Model G hyperbolic tangent U0 = 1.01Ef , kfR = 14.93, b = 12.47, c = 0.246

Model H hyperbolic tangent U0 = 2Ef , kfR = 14.18, b = 11.92, c = 0.226

Model I soft sphere 1 U0 = 1.01Ef , kfR = 12.48

Model J soft sphere 2 U0 = 2Ef , kfR = 11.95
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Hard-sphere model with kfR = 11.17 (Model A)
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Comparison with Experiment for Models for the QP-ion potential

Label Potential Parameters

Model A hard sphere kfR = 11.17

Model B attractive well with a repulsive core U0 = 100Ef , U1 = 10Ef , kfR
′ = 11, R/R′ = 0.36

Model C random phase shifts model 1 lmax = 11

Model D random phase shifts model 2 lmax = 11

Model E Pöschl-Teller-like U0 = 1.01Ef , kfR = 22.15, α = 3× 10−5, n = 4

Model F Pöschl-Teller-like U0 = 2Ef , kfR = 19.28, α = 6× 10−5, n = 4
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Mobility of an electron bubble in the Normal Fermi Liquid

(i) tRN (k̂′, k̂;E) =

∞∑
l=0

(2l + 1)tRl (E)Pl(k̂
′ · k̂)

(ii) tRl (E) = − 1

πNf
eiδl sin δl

(iii)
dσ

dΩk′
=

(
m∗

2π~2

)2

|tRN (k̂′, k̂;E)|2

(iv) σtr
N =

∫
dΩk′

4π
(1− k̂ · k̂′) dσ

dΩk′
=

4π

k2
f

∞∑
l=0

(l + 1) sin2(δl+1 − δl)

(v) µN =
e

n3pfσ
tr
N

, pf = ~kf , n3 =
k3
f

3π2
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Calculation of LDOS and Current Density

ĜRS (r′, r, E) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
eik
′r′e−ikrĜRS (k′,k, E)

ĜRS (k′,k, E) = (2π)3ĜRS (k, E)δk′,k + ĜRS (k′, E)T̂S(k′,k, E)ĜRS (k, E)

ĜRS (k, E) =
1

ε2 − E2
k

(
ε+ ξk −∆(k̂)

−∆†(k̂) ε− ξk

)
, ε = E + iη, η → 0+

N(r, E) = − 1

2π
Im
{

Tr
[
ĜRS (r, r, E)

]}

j(r) =
~

4mi
kBT

∞∑
n=−∞

lim
r→r′

Tr
[
(∇r′ −∇r)ĜM (r′, r, εn)

]
ĜRS (r′, r, E) = ĜMS (r′, r, εn)

∣∣∣
iεn→ε

, for n ≥ 0

ĜMS (k,k′,−εn) =
[
ĜMS (k′,k, εn)

]†
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Temperature scaling of the Stokes tensor components

For 1− T

Tc
→ 0+:

η⊥
ηN

− 1 ∝ −∆(T ) ∝
√

1− T

Tc

ηAH

ηN

∝ ∆2(T ) ∝ 1− T

Tc

For
T

Tc
→ 0+:

η⊥
ηN

∝
(
T

Tc

)2

ηAH

ηN

∝
(
T

Tc

)3
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Multiple Andreev Scattering  Formation of Weyl fermions on e-bubbles

e*

h*

e*

h*
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Chiral Edge Currents

Local Density of States: N(p, x; ε) = − 1

π
Im gR(p, x; ε)

Pair Time-Reversed Trajectories
Spectral Current Density :

~J(p, x; ε) = 2Nf v(p)
[
N(p, x; ε)−N(p′, x; ε)

]
p’

p’ p’

_

p’_ p_

p_

a
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b
p

xx
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Edge Currents and Angular Momentum

Ground-State Current Density: ~J(x) =

∫ +pf

−pf

dp||
pf

∫ 0

−∞

~J(p, x; ε)
z

R

x r

Bound-State Contribution (R� ξ∆):

Jϕ(p, x; ε) = 2Nf vf ∆ |px| pϕ e−x/ξ∆

×
[
δ(ε− εbs(p||))− δ(ε− εbs(p

′
||))
]

Bound-State Edge Current:

∫ ∞
0

dxJϕ(x) =
1

2
n ~

Mass Current: vf → pf  ~J → ~g

I Lbs
z =

∫
V

d2r [r gϕ(r)] = N ~ ×2 Too Large vs. MT

I Continuum (ε < −∆):
JC
ϕ = 2Nf vf |px|

(
∆2 p2

ϕ

ε2 − ε2
bs(p||)

)
sin
(

2
√
ε2 −∆2 x/vx

)

I LC
z =

∫
V

d2r
[
r gC

ϕ(r)
]

= −1

2
N ~  Ltotal

z = (N/2)~ - MT Result Recovered!

I J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
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Thermal Excitation of Chiral Edge Fermions

Thermally Excited Edge Fermions Carry the Opposite Current
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Angular Momentum of 3He-A vs. Temperature

J =
1

4
n ~ × Yedge(T ) Yedge(T ) ≈ 1− c (T/∆)2 , T � ∆

I Thermal Signature of the Chiral Edge States

ρs(T )/ρ = Ybulk(T ) − 1 ∝ − e−∆/T , T � ∆
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Ground-State Angular Momentum of 3He-A in a Toroidal Geometry

3He-A confined in a toroidal cavity

J2
J1

R1

R2
D

w R1, R2, R1 −R2 � ξ0

Sheet Current: J =
1

4
n ~ (n = N/V = 3He density)

Counter-propagating Edge Currents: J1 = −J2 =
1

4
n ~

Angular Momentum:

Lz = 2π h (R2
1 −R2

2)× 1

4
n ~ = (N/2) ~ McClure-Takagi Result

I J. A. Sauls, Phys. Rev. B 84, 214509 (2011)
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Robustness of Edge Currents vs Edge States

Magnitude of Edge Currents are Protected by Symmetry

Specular Reflection
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Edge Current: J =
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n ~

Retro Reflection
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Zero-Energy Fermions for all p:
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 Edge Current: J = 0
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Non-Extensive Scaling of Lz in a Toroidal Geometry

Magnitude of Edge Currents are Protected by Symmetry

h J
1J

2

R2

R1
p+x! yp i Sheet Current: J = f × 1

4
n ~

Non-Specular Surfaces
0 ≤ f ≤ 1

Incomplete Screening of Counter-Propagating Currents

Scaling of Lz with r = (R2/R1)2 0 < r < 1

I f1 = 1, f2 = 0

Lz = (N/2) ~×
(

1

1− r

)
� (N/2) ~

I f1 = 0, f2 = 1

Lz = (N/2) ~×

(
−r

1− r

)
� −(N/2) ~

I Strong violations of the McClure-Takagi Result

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Non-Extensive Scaling of Lz in a Toroidal Geometry

Magnitude of Edge Currents are Protected by Symmetry

h J
1J

2

R2

R1
p+x! yp i Sheet Current: J = f × 1

4
n ~

Non-Specular Surfaces
0 ≤ f ≤ 1

Incomplete Screening of Counter-Propagating Currents

Scaling of Lz with r = (R2/R1)2 0 < r < 1

I f1 = 1, f2 = 0

Lz = (N/2) ~×
(

1

1− r

)
� (N/2) ~

I f1 = 0, f2 = 1

Lz = (N/2) ~×

(
−r

1− r

)
� −(N/2) ~

I Strong violations of the McClure-Takagi Result

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Non-Extensive Scaling of Lz in a Toroidal Geometry

Magnitude of Edge Currents are Protected by Symmetry

h J
1J

2

R2

R1
p+x! yp i Sheet Current: J = f × 1

4
n ~

Non-Specular Surfaces
0 ≤ f ≤ 1

Incomplete Screening of Counter-Propagating Currents

Scaling of Lz with r = (R2/R1)2 0 < r < 1

I f1 = 1, f2 = 0

Lz = (N/2) ~×
(

1

1− r

)
� (N/2) ~

I f1 = 0, f2 = 1

Lz = (N/2) ~×

(
−r

1− r

)
� −(N/2) ~

I Strong violations of the McClure-Takagi Result

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Non-Extensive Scaling of Lz in a Toroidal Geometry

Magnitude of Edge Currents are Protected by Symmetry

h J
1J

2

R2

R1
p+x! yp i Sheet Current: J = f × 1

4
n ~

Non-Specular Surfaces
0 ≤ f ≤ 1

Incomplete Screening of Counter-Propagating Currents

Scaling of Lz with r = (R2/R1)2 0 < r < 1

I f1 = 1, f2 = 0

Lz = (N/2) ~×
(

1

1− r

)
� (N/2) ~

I f1 = 0, f2 = 1

Lz = (N/2) ~×

(
−r

1− r

)
� −(N/2) ~

I Strong violations of the McClure-Takagi Result

J. A. Sauls The Left Hand of the Electron in Superfluid 3He



Edge States & Edge Currents in Chiral Superconductors & 3He-A

I Mesoscopic geometries: Edge states are important for transport

Surface states, edge currents, and the angular momentum of chiral p-wave
superfluids and superconductors,
JAS, Phys. Rev. B 84, 214509 (2011) [arXiv:1209.5501]

Symmetry Protected Topological Superfluids and Superconductors — From the
Basics to 3He,
T. Mizushima, Y. Tsutsumi , T. Kawakami, M. Sato, M. Ichioka, K. Machida

[arXiv:1508.00787]
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