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Dynamics
How fast can isolated 
interacting quantum 
systems evolve?

How does the 
dynamics depend on 
the time scale? Is the dynamics affected 

by critical points?

How does the dynamics 
depend on the Hamiltonian? 

(interactions, chaos)

How does the evolution 
depend on the initial state, 

perturbation?

Power-law Decays and Thermalization in 
Isolated Many-Body Quantum Systems
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Coherent Evolution in Experiments

NMR                                                         Ultracold Gases                                 
Solid state NMR: nuclear positions are fixed;
They are collectively addressed with magnetic pulses;
Very slow relaxation

Cory (Waterloo)
Cappellaro (MIT)
Ramanathan 
(Dartmouth)

Ions trapped via electric and magnetic fields.
Laser used to induce couplings.
Isolated from an external environment.

Monroe (Maryland)

Blatt (Innsbrück)

Ion Traps

Dynamics under designed potentials.

Ø highly controllable systems – interactions, level of 
disorder, 1,2,3D
(simple models)

Ø quasi-isolated -- study evolution for very long time

Bloch (Max Planck)
Esslinger (ETH)

Greiner (Harvard)
Weiss (Penn Sate)
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SYSTEM MODELS
1D spin-1/2 
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Chaotic Models
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Defect model LFS,
JPA (2004)

Breaking the integrability of the 1D XXZ model
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Breaking the integrability of the 1D XXZ model

Defect model
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QUANTUM CHAOS
FULL RANDOM MATRICES

vs
TWO-BODY INTERACTIONS
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Quantum Chaos: Level Repulsion

Full random matrices:
Matrices filled with random numbers and respecting the symmetries of the system.

Wigner in the 1950’s used random matrices to study the spectrum of heavy nuclei
(atoms, molecules, quantum dots)

121 EEs -=

232 EEs -=
343 EEs -=

454 EEs -=

1E

2E
3E
4E
5E

Wigner-Dyson distribution
(time reversal symmetry)

÷÷
ø

ö
çç
è

æ
-=

4
exp

2
)(

2sssPWD
pp

Level repulsion

Level spacing distribution

(i) Time-reversal invariant systems with rotational symmetry : 
Hamiltonians are real and symmetric
Gaussian Orthogonal Ensemble (GOE)

(ii)  Systems without invariance under time reversal (atom in an external magnetic field)
Gaussian Unitary Ensemble (GUE)
Hamiltonians are Hermitian)

(iii) Time-reversal invariant systems, 
half-integer spin, broken rotational symmetry
Gaussian Sympletic Ensemble (GSE)

Level repulsion  = quantum chaos
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Level Spacing Distribution: spin systems

Integrable
XXZ model

Chaotic
NNN model
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Full Random Matrices vs Two-Body Interaction

French & Wong, PLB (1970)

Two-body interactions: Gaussian

Eα

ρ

EEαWigner (1957)

Full random matrices: semicircular

ρ
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Full Random Matrices vs Two-Body Interaction

Participation Ratio

PR(α ) ≡ 1

| ci
(α ) |4

i=1

D

∑

ψ (α ) = ci
(α )φi

i=1

D

∑

Full random matrices: random vectors

PR(α ) ~ Dim
3
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Full Random Matrices vs Two-Body Interaction

Participation Ratio

PR(α ) ≡ 1
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Full random matrices: random vectors

PR(α ) ~ Dim
3

Shannon (information) entropy

Sh(α ) ~ ln(0.48Dim) å-=
i
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Full Random Matrices vs Two-Body Interaction

Participation Ratio

PR(α ) ≡ 1

| ci
(α ) |4

i=1

D

∑

ψ (α ) = ci
(α )φi

i=1

D

∑

Full random matrices: random vectors

Eα

Basis
dependent

Two-body interactions: energy 
dependence

PR(α ) ~ Dim
3

Sh(α ) ~ ln(0.48Dim)

Shannon (information) entropy

å-=
i

ii CCSh
2)(2)()( ln aaa
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Main Results

Survival Probability (= Fourier transform of the spectral autocorrelation function 
= analytically continued partition function)

Ø Decays faster than exponential in chaotic and integrable models.

Ø Power-law decays at long times (delocalized and nearly localized systems).

Ø Unambiguous dynamical manifestation of level repulsion: correlation hole.

Ø Similarities between the entanglement and Shannon (information) entropy.

Ø Out-of-time correlators.

2
)(|)0()( ñYY= ttF

3-t

6-t
Analytical results for FRM
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DYNAMICS
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Quench

|Ψ(0)〉 =| ini〉 |Ψ(t)〉 = Cα
ini

α

∑ e−iEα t |α 〉
Initial state 

Hinitial

| n〉
H final

α
quench
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Overlap between the initial state and the evolved state

Survival Probability 
(Fidelity)

|Ψ(0)〉 = ini = Cα
ini

α

∑ |α 〉 |Ψ(t)〉 = Cα
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α

∑ e−iEα t |α 〉

Eigenvalues and eigenstates 
of the final Hamiltonian

F(t) = Ψ(0) |Ψ(t)〉
2
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Overlap between the initial state and the evolved state

Survival Probability 
(Fidelity)
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Fourier transform



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

Quench Dynamics

Chaotic

NNN model
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Perturbation increases
Fidelity decays faster

Hinitial = HXXZ
quench! →!! H final = HXXZ +λHNNN
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Slow decay

L=16, 8 up spins, T=7.1 Δ = 0.5
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Exponential decay
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Lorentzian

L=16, 8 up spins, T=7.1 Δ = 0.5

Hinitial = HXXZ
quench! →!! H final = HXXZ +λHNNN

LDOS:

F(t) = exp(−Γinit)
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Exponential decay
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L=16, 8 up spins, T=7.1 Δ = 0.5

Hinitial = HXXZ
quench! →!! H final = HXXZ +λHNNN
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Faster than exponential:
Gaussian
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Hinitial = HXXZ
quench! →!! H final = HXXZ +λHNNN

LDOS:

Cα
ini

δE

2



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

Gaussian decay
Gaussian DOS & LDOS
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L=18, 6 up spins

Torres, Vyas, LFS
NJP 16 (2014)

Torres & LFS 
PRA 89 (2014)

Torres & LFS 
PRA 90 (2014)
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Evolution of Entropies

Sh(t) = − Wn (t)lnWn (t)
n
∑ Wn (t) = φn | e

−iHt |Ψ(0)
2

Sv(t) = −Tr[ρA (t)lnρA (t)]

Entanglement Entropy: von Neumann entropy of the reduced density matrix

Shannon Entropy:

Torres et al, 
Entropy 18, 359 (2016) 

A B
entangled
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Integrable and Chaotic Models

integrable
XXZ

integrable
XXZ

chaotic
defect

chaotic
defect

chaotic
NNN

chaotic
NNN

|Ψ(0)〉
Néel state

Torres et al, 
Entropy (2016) 

LFS,	Borgonovi,	Izrailev
PRL	108,	094102	(2012)
PRE	85,	036209	(2012)
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Dynamics under
full random matrices

Distribution of             for initial state projected into random matrices: semicircularCα
ini 2
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Quench: Disordered Hamiltonian

↑↓↑↓↑↓↑↓

Site-basis
vectors

↑↓↑↑↓↓↑↓
Hfinal = hnSn

z

n=1

L

∑ + J(Sn
xSn+1

x + Sn
ySn+1

y + Sn
zSn+1

z )
n=1

L

∑

n        n+1    n+2

hn hn+1           hn+2

↑↓↑↓↑↓↑↓

↑↓↑↑↓↓↑↓
Hfinal = hnSn

z

n=1

L

∑ + J(Sn
xSn+1

x + Sn
ySn+1

y + Sn
zSn+1

z )
n=1

L

∑

Anderson localization

Strong
perturbation



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

0 1 2 3 4 50

0.5

1

<η
>

0

0.5

1

0.10

5

10

<Σ
2 (
10
)>

0

5

10

0 1 2 3 4 5
h

0.001

0.01

0.1

1

<P
R
>/
PR

FR
M

0 1 2 3 4 50.001

0.01

0.1

1

0 0.2 0.4 0
h

0

0.2

0.4

0.6

0.8

1

D
2

0 0.2 0.4 00

0.2

0.4

0.6

0.8

1

Intermediate level statistics:     h>J     (nonergodic delocalized states)

Integrable-chaos-integrable

LFS, J. Phys. A 37, 4723 (2004)
LFS, Rigolin, Escobar PRA (2004)

h

0.001

0.01

0.1

1

IP
RF

R
M
/<
IP
R
>

0.001

0.01

0.1

1

0

0.5

1

D
2

0.3
0.4

0.6
0.8
1

<S
Sh
>/
S S
hFR
M

1

0 1 2 3 4 5
h

0.1

0.2

0.4
0.6

1

<S
vN
>/
S v
NFR
M

0 1 2 3 4 50.1

1 0

0.5

1

D
1

0

0.5

1

0 10

0.5

1

D
1v
N

0 10

0.5

1

(a)

(c)

(e)

Torres & LFS, Ann. Phys. (2017) 

PR(α ) ∝DimD2

D2 <1

Hfinal = hnSn
z

n=1

L

∑ + J(Sn
xSn+1

x + Sn
ySn+1

y + Sn
zSn+1

z )
n=1

L

∑

qDq
q DimPR )1()( -µa

Multifractality = nonlinear
dependence of the generalized

dimension on q



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

L=16, 8 up spins

100 102 104
t

10-4

10-3

10-2

10-1

100

<F
(t)
>

0

0.1

0.2

0.3
ρ

-4 -2 0 2 4
E

0

1

2
ρ

0

0.4

0.8ρ

(a)

(b)

(c)

(d)

J

h=0.5

Torres & LFS
PRB 92, 01420 (2015)

h=1.5

h=2.7

100 102 104
t

10-4

10-3

10-2

10-1

100
<F
(t)
>

0

0.1

0.2

0.3
ρ

-4 -2 0 2 4
E

0

1

2
ρ

0

0.4

0.8ρ

(a)

(b)

(c)

(d)

h=1.5

h=2.7

Cα
ini 2

100 102 104
t

10-4

10-3

10-2

10-1

100

<F
(t)
>

0

0.1

0.2

0.3
ρ

-4 -2 0 2 4
E

0

1

2
ρ

0

0.4

0.8ρ

(a)

(b)

(c)

(d)

Cα
ini 2

100 102 104
t

10-4

10-3

10-2

10-1

100

<F
(t)
>

0

0.1

0.2

0.3
ρ

-4 -2 0 2 4
E

0

1

2
ρ

0

0.4

0.8ρ

(a)

(b)

(c)

(d)Cα
ini 2

h=0.5

h=2.7Cα
ini 4

α

∑ = IPRini

multifractal
fluctuationsH final = hnSn

z

n=1

L

∑ + J(Sn
xSn+1

x + Sn
ySn+1

y + Sn
zSn+1

z )
n=1

L

∑

Sparse LDOS
System with strong disorder



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

Power-law exponent: correlations
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3

models. The system becomes chaotic as � increases [43–45]
and the level spacing distribution changes from a Shnirelman
peak or Poisson shape [46] to a Wigner-Dyson form [47].

The initial states that are mainly considered here are site-
basis vectors, where the spin on each site either points up or
down in the z-direction. They include the experimentally ac-
cessible Néel state, |NSi = | "#"#"#"# . . .i, and the domain
wall state, |DWi = | """ . . . ### . . .i, both extensively used
in studies of the dynamics of integrable spin models.

Case 1: Powerlaw decay caused by spectrum bounds.– The
scenario of site-basis vectors evolving under Hamiltonian (4)
corresponds to a strong perturbation, where the anisotropy pa-
rameter is quenched from � ! 1 to a finite value. The
LDOS is therefore expected to have a Gaussian shape, as in-
deed shown in Fig. 3 (a) for the Néel state under the chaotic
Hamiltonian with � = 1. The consequent Gaussian decay of
F (t) is seen in Fig. 3 (b) up to t ⇠ 2. It agrees extremely well
with the analytical expression F (t) = exp(��2

0t
2
) [8].
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FIG. 1: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

The minimum value reached by F (t) during the Gaus-
sian decay is significantly below the infinite time average
¯F = IPR0. This is caused by destructive interferences
between the pure Gaussian decay of an unbounded LDOS
and the probability for the initial state reconstruction due to
the energy bounds. The point in time where this so-called
survival collapse [48, 49] occurs increases monotonically
with the largest ratio (Elow,up � E0)/�0, where Eup is the
LDOS upper bound [50].

Since the referee commented that “there are no rigorous
analytical results”, maybe the inclusion of the following
equation inside the body of the paper could be useful.

The Fourier transform of a Gaussian LDOS with lower and

FIG. 2: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 3: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

upper bounds leads at long times to:

F (t � ��1
0 ) ' 1

2⇡�2
0t

2N 2

X

k=up,low

e�(E
k

�E0)
2/�2

0 (5)

(see the exact expression in [51]). In Fig. 3 (b), despite
fluctuations caused by finite-size effects, we indeed observe
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FIG. 4: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 5: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

Corroborating this result, we found the exponent � = 2

also for periodic boundary conditions, chaotic models with
different values of � and �, including � = 0, other initial
states, and for the XXZ model with small random magnetic
fields (see figures in [51]). A t�2 decay has also been
speculated for the chaotic Ising model with longitudinal and
transverse fields [54].

The exponent � = 2 indicates that the LDOS is ergodically
filled, as corroborated also by computing the inverse participa-
tion ratio of the initial state. We have found that IPR0 / D�1,
as in full random matrices.

To compare different system sizes, we show in Fig. 5 (c),
the rescaled survival probability f(t) = �(1/L) lnF (t) [52].
For L � 1, this quantity is independent of L [53]. The t�2

behavior is once again evident.
Our results for the long-time decay of F (t) fall within Case
1(i). From the analytical expression (5), F (t � ��1

0 ) '

At�2 [51], where A depends on L, E0, and the energy
bounds, it is clear that for the largest system size, the survival
probability goes to zero as t ! 1, indicating that the LDOS
is absolutely integrable. The exponent � = 2 is therefore an
indicator of the ergodic filling of the energy distribution of the
initial state and consequently of the viability of thermaliza-
tion.

Algebraic decays faster than t�2 also signal the ergodic fill-
ing of the LDOS. They are possible if instead of two-body in-
teractions, many-body random interactions are included. As
the number of particles that interact simultaneously grows,
increasing the number of uncorrelated nonzero elements in
the Hamiltonian matrix, the density of states transitions from
Gaussian to semicircle [12]. This transition is reflected also
in the shape of the LDOS [8, 55–57]. The Fourier transform
of a semicircle leads to F (t) = [J1(2�0t)]

2/(�2
0t

2
), where

J1 is the Bessel function of the first kind [8]. The decay at
short times is faster than Gaussian and the asymptotic expan-
sion for long times reveals a powerlaw decay with � = 3,
F (t � ��1

0 ) ' [1 � sin(4�0t)]/(2⇡�
3
0t

3
). This scenario co-

incides with Case 1(ii), where for the semicircle, ⇠ = 1/2,
⌘(E) = (2⇡�2

0)
�1

(2�0�E)

1/2, and Elow = �2�0. To illus-
trate the increase of the value of the powerlaw exponent from
2 to 3, we consider a powerlaw band random matrix (PBRM)
[58–60]. PBRMs have being extensively used in studies of the
metal-insulator transition.

Despite the success of FRM in the statistical analysis of
complex systems spectra, they imply the unphysical scenario
of all particles interacting simultaneously. Band random ma-
trices were introduced [55] in an effort to better approach
random matrices to real systems, for which the Hamiltoni-
ans written in a mean field basis are indeed banded. In the
PBRMs that we consider [61], time reversal symmetry is
preserved and the elements are real random numbers from
a Gaussian distribution, so that hHnni = 0, hH2

nni = 2,
hH2

nmi = 1/[1 + |(n � m)/b|2] for n 6= m, and b > 1.
The value of b determines how fast the elements decrease as
they move away from the diagonal. For b ! 1, we recover a
FRM from a Gaussian orthogonal ensemble [47].

In Fig. 6 (a), we show the survival probability for PBRMs
with different values of b. As b grows from 50 to D and the
LDOS transitions from Case 1(i) to Case 1(ii), the exponent
� increases from ⇠ 2 to 3. In contrast, as b decreases below
50, the eigenstates become less spread out, the LDOS more
sparse, and � decreases below 2. PBRMs therefore provide a
general picture of the behavior of the survival probability, cov-
ering all values of �, without restriction to a specific model.

Case 2: Powerlaw decay caused by correlations.– Power-
law exponents smaller than 1 have been verified in disordered
systems undergoing localization. Such small powerlaw expo-
nents reflect the onset of multifractal eigenstates and of corre-
lations of eigenstates of different energies [29–32, 35, 36] and
are thus associated with lack of ergodicity.

Here, we show that � < 1 appears also for high energy
states projected onto clean noninteracting integrable models.
This is the case of site-basis vectors evolving under the XX
model, for which E0 = 0.

Let us start with the Néel state evolving under a closed

Ergodic
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filling

3

models. The system becomes chaotic as � increases [43–45]
and the level spacing distribution changes from a Shnirelman
peak or Poisson shape [46] to a Wigner-Dyson form [47].

The initial states that are mainly considered here are site-
basis vectors, where the spin on each site either points up or
down in the z-direction. They include the experimentally ac-
cessible Néel state, |NSi = | "#"#"#"# . . .i, and the domain
wall state, |DWi = | """ . . . ### . . .i, both extensively used
in studies of the dynamics of integrable spin models.

Case 1: Powerlaw decay caused by spectrum bounds.– The
scenario of site-basis vectors evolving under Hamiltonian (4)
corresponds to a strong perturbation, where the anisotropy pa-
rameter is quenched from � ! 1 to a finite value. The
LDOS is therefore expected to have a Gaussian shape, as in-
deed shown in Fig. 3 (a) for the Néel state under the chaotic
Hamiltonian with � = 1. The consequent Gaussian decay of
F (t) is seen in Fig. 3 (b) up to t ⇠ 2. It agrees extremely well
with the analytical expression F (t) = exp(��2

0t
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) [8].
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FIG. 1: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

The minimum value reached by F (t) during the Gaus-
sian decay is significantly below the infinite time average
¯F = IPR0. This is caused by destructive interferences
between the pure Gaussian decay of an unbounded LDOS
and the probability for the initial state reconstruction due to
the energy bounds. The point in time where this so-called
survival collapse [48, 49] occurs increases monotonically
with the largest ratio (Elow,up � E0)/�0, where Eup is the
LDOS upper bound [50].

Since the referee commented that “there are no rigorous
analytical results”, maybe the inclusion of the following
equation inside the body of the paper could be useful.

The Fourier transform of a Gaussian LDOS with lower and

FIG. 2: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

-5 0 5
E

0

0.1

0.2

0.3

ρ
0

-5 0 5
0

0.1

0.2

0.3

0.1 1 10 100
t

10
-8

10
0

F

0.1 1 10 100 0 10 20
t

0

0.5

1

f

0

0

0.5

1

(a)

(b) (c)

FIG. 3: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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(see the exact expression in [51]). In Fig. 3 (b), despite
fluctuations caused by finite-size effects, we indeed observe
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L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 5: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

Corroborating this result, we found the exponent � = 2

also for periodic boundary conditions, chaotic models with
different values of � and �, including � = 0, other initial
states, and for the XXZ model with small random magnetic
fields (see figures in [51]). A t�2 decay has also been
speculated for the chaotic Ising model with longitudinal and
transverse fields [54].

The exponent � = 2 indicates that the LDOS is ergodically
filled, as corroborated also by computing the inverse participa-
tion ratio of the initial state. We have found that IPR0 / D�1,
as in full random matrices.

To compare different system sizes, we show in Fig. 5 (c),
the rescaled survival probability f(t) = �(1/L) lnF (t) [52].
For L � 1, this quantity is independent of L [53]. The t�2

behavior is once again evident.
Our results for the long-time decay of F (t) fall within Case
1(i). From the analytical expression (5), F (t � ��1

0 ) '

At�2 [51], where A depends on L, E0, and the energy
bounds, it is clear that for the largest system size, the survival
probability goes to zero as t ! 1, indicating that the LDOS
is absolutely integrable. The exponent � = 2 is therefore an
indicator of the ergodic filling of the energy distribution of the
initial state and consequently of the viability of thermaliza-
tion.

Algebraic decays faster than t�2 also signal the ergodic fill-
ing of the LDOS. They are possible if instead of two-body in-
teractions, many-body random interactions are included. As
the number of particles that interact simultaneously grows,
increasing the number of uncorrelated nonzero elements in
the Hamiltonian matrix, the density of states transitions from
Gaussian to semicircle [12]. This transition is reflected also
in the shape of the LDOS [8, 55–57]. The Fourier transform
of a semicircle leads to F (t) = [J1(2�0t)]

2/(�2
0t

2
), where

J1 is the Bessel function of the first kind [8]. The decay at
short times is faster than Gaussian and the asymptotic expan-
sion for long times reveals a powerlaw decay with � = 3,
F (t � ��1

0 ) ' [1 � sin(4�0t)]/(2⇡�
3
0t

3
). This scenario co-

incides with Case 1(ii), where for the semicircle, ⇠ = 1/2,
⌘(E) = (2⇡�2

0)
�1

(2�0�E)

1/2, and Elow = �2�0. To illus-
trate the increase of the value of the powerlaw exponent from
2 to 3, we consider a powerlaw band random matrix (PBRM)
[58–60]. PBRMs have being extensively used in studies of the
metal-insulator transition.

Despite the success of FRM in the statistical analysis of
complex systems spectra, they imply the unphysical scenario
of all particles interacting simultaneously. Band random ma-
trices were introduced [55] in an effort to better approach
random matrices to real systems, for which the Hamiltoni-
ans written in a mean field basis are indeed banded. In the
PBRMs that we consider [61], time reversal symmetry is
preserved and the elements are real random numbers from
a Gaussian distribution, so that hHnni = 0, hH2

nni = 2,
hH2

nmi = 1/[1 + |(n � m)/b|2] for n 6= m, and b > 1.
The value of b determines how fast the elements decrease as
they move away from the diagonal. For b ! 1, we recover a
FRM from a Gaussian orthogonal ensemble [47].

In Fig. 6 (a), we show the survival probability for PBRMs
with different values of b. As b grows from 50 to D and the
LDOS transitions from Case 1(i) to Case 1(ii), the exponent
� increases from ⇠ 2 to 3. In contrast, as b decreases below
50, the eigenstates become less spread out, the LDOS more
sparse, and � decreases below 2. PBRMs therefore provide a
general picture of the behavior of the survival probability, cov-
ering all values of �, without restriction to a specific model.

Case 2: Powerlaw decay caused by correlations.– Power-
law exponents smaller than 1 have been verified in disordered
systems undergoing localization. Such small powerlaw expo-
nents reflect the onset of multifractal eigenstates and of corre-
lations of eigenstates of different energies [29–32, 35, 36] and
are thus associated with lack of ergodicity.

Here, we show that � < 1 appears also for high energy
states projected onto clean noninteracting integrable models.
This is the case of site-basis vectors evolving under the XX
model, for which E0 = 0.

Let us start with the Néel state evolving under a closed
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models. The system becomes chaotic as � increases [43–45]
and the level spacing distribution changes from a Shnirelman
peak or Poisson shape [46] to a Wigner-Dyson form [47].

The initial states that are mainly considered here are site-
basis vectors, where the spin on each site either points up or
down in the z-direction. They include the experimentally ac-
cessible Néel state, |NSi = | "#"#"#"# . . .i, and the domain
wall state, |DWi = | """ . . . ### . . .i, both extensively used
in studies of the dynamics of integrable spin models.

Case 1: Powerlaw decay caused by spectrum bounds.– The
scenario of site-basis vectors evolving under Hamiltonian (4)
corresponds to a strong perturbation, where the anisotropy pa-
rameter is quenched from � ! 1 to a finite value. The
LDOS is therefore expected to have a Gaussian shape, as in-
deed shown in Fig. 3 (a) for the Néel state under the chaotic
Hamiltonian with � = 1. The consequent Gaussian decay of
F (t) is seen in Fig. 3 (b) up to t ⇠ 2. It agrees extremely well
with the analytical expression F (t) = exp(��2

0t
2
) [8].
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FIG. 1: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

The minimum value reached by F (t) during the Gaus-
sian decay is significantly below the infinite time average
¯F = IPR0. This is caused by destructive interferences
between the pure Gaussian decay of an unbounded LDOS
and the probability for the initial state reconstruction due to
the energy bounds. The point in time where this so-called
survival collapse [48, 49] occurs increases monotonically
with the largest ratio (Elow,up � E0)/�0, where Eup is the
LDOS upper bound [50].

Since the referee commented that “there are no rigorous
analytical results”, maybe the inclusion of the following
equation inside the body of the paper could be useful.

The Fourier transform of a Gaussian LDOS with lower and

FIG. 2: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 3: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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(see the exact expression in [51]). In Fig. 3 (b), despite
fluctuations caused by finite-size effects, we indeed observe
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FIG. 4: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

-5 0 5
E

0

0.1

0.2

0.3

ρ
0

-5 0 5
0

0.1

0.2

0.3

0.1 1 10 100
t

10
-8

10
0

F

0.1 1 10 100 0 10 20
t

0

0.5

1

f

0

0

0.5

1

(a)

(b) (c)

FIG. 5: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

Corroborating this result, we found the exponent � = 2

also for periodic boundary conditions, chaotic models with
different values of � and �, including � = 0, other initial
states, and for the XXZ model with small random magnetic
fields (see figures in [51]). A t�2 decay has also been
speculated for the chaotic Ising model with longitudinal and
transverse fields [54].

The exponent � = 2 indicates that the LDOS is ergodically
filled, as corroborated also by computing the inverse participa-
tion ratio of the initial state. We have found that IPR0 / D�1,
as in full random matrices.

To compare different system sizes, we show in Fig. 5 (c),
the rescaled survival probability f(t) = �(1/L) lnF (t) [52].
For L � 1, this quantity is independent of L [53]. The t�2

behavior is once again evident.
Our results for the long-time decay of F (t) fall within Case
1(i). From the analytical expression (5), F (t � ��1

0 ) '

At�2 [51], where A depends on L, E0, and the energy
bounds, it is clear that for the largest system size, the survival
probability goes to zero as t ! 1, indicating that the LDOS
is absolutely integrable. The exponent � = 2 is therefore an
indicator of the ergodic filling of the energy distribution of the
initial state and consequently of the viability of thermaliza-
tion.

Algebraic decays faster than t�2 also signal the ergodic fill-
ing of the LDOS. They are possible if instead of two-body in-
teractions, many-body random interactions are included. As
the number of particles that interact simultaneously grows,
increasing the number of uncorrelated nonzero elements in
the Hamiltonian matrix, the density of states transitions from
Gaussian to semicircle [12]. This transition is reflected also
in the shape of the LDOS [8, 55–57]. The Fourier transform
of a semicircle leads to F (t) = [J1(2�0t)]

2/(�2
0t

2
), where

J1 is the Bessel function of the first kind [8]. The decay at
short times is faster than Gaussian and the asymptotic expan-
sion for long times reveals a powerlaw decay with � = 3,
F (t � ��1

0 ) ' [1 � sin(4�0t)]/(2⇡�
3
0t

3
). This scenario co-

incides with Case 1(ii), where for the semicircle, ⇠ = 1/2,
⌘(E) = (2⇡�2

0)
�1

(2�0�E)

1/2, and Elow = �2�0. To illus-
trate the increase of the value of the powerlaw exponent from
2 to 3, we consider a powerlaw band random matrix (PBRM)
[58–60]. PBRMs have being extensively used in studies of the
metal-insulator transition.

Despite the success of FRM in the statistical analysis of
complex systems spectra, they imply the unphysical scenario
of all particles interacting simultaneously. Band random ma-
trices were introduced [55] in an effort to better approach
random matrices to real systems, for which the Hamiltoni-
ans written in a mean field basis are indeed banded. In the
PBRMs that we consider [61], time reversal symmetry is
preserved and the elements are real random numbers from
a Gaussian distribution, so that hHnni = 0, hH2

nni = 2,
hH2

nmi = 1/[1 + |(n � m)/b|2] for n 6= m, and b > 1.
The value of b determines how fast the elements decrease as
they move away from the diagonal. For b ! 1, we recover a
FRM from a Gaussian orthogonal ensemble [47].

In Fig. 6 (a), we show the survival probability for PBRMs
with different values of b. As b grows from 50 to D and the
LDOS transitions from Case 1(i) to Case 1(ii), the exponent
� increases from ⇠ 2 to 3. In contrast, as b decreases below
50, the eigenstates become less spread out, the LDOS more
sparse, and � decreases below 2. PBRMs therefore provide a
general picture of the behavior of the survival probability, cov-
ering all values of �, without restriction to a specific model.

Case 2: Powerlaw decay caused by correlations.– Power-
law exponents smaller than 1 have been verified in disordered
systems undergoing localization. Such small powerlaw expo-
nents reflect the onset of multifractal eigenstates and of corre-
lations of eigenstates of different energies [29–32, 35, 36] and
are thus associated with lack of ergodicity.

Here, we show that � < 1 appears also for high energy
states projected onto clean noninteracting integrable models.
This is the case of site-basis vectors evolving under the XX
model, for which E0 = 0.

Let us start with the Néel state evolving under a closed
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models. The system becomes chaotic as � increases [43–45]
and the level spacing distribution changes from a Shnirelman
peak or Poisson shape [46] to a Wigner-Dyson form [47].

The initial states that are mainly considered here are site-
basis vectors, where the spin on each site either points up or
down in the z-direction. They include the experimentally ac-
cessible Néel state, |NSi = | "#"#"#"# . . .i, and the domain
wall state, |DWi = | """ . . . ### . . .i, both extensively used
in studies of the dynamics of integrable spin models.

Case 1: Powerlaw decay caused by spectrum bounds.– The
scenario of site-basis vectors evolving under Hamiltonian (4)
corresponds to a strong perturbation, where the anisotropy pa-
rameter is quenched from � ! 1 to a finite value. The
LDOS is therefore expected to have a Gaussian shape, as in-
deed shown in Fig. 3 (a) for the Néel state under the chaotic
Hamiltonian with � = 1. The consequent Gaussian decay of
F (t) is seen in Fig. 3 (b) up to t ⇠ 2. It agrees extremely well
with the analytical expression F (t) = exp(��2

0t
2
) [8].
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FIG. 1: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

The minimum value reached by F (t) during the Gaus-
sian decay is significantly below the infinite time average
¯F = IPR0. This is caused by destructive interferences
between the pure Gaussian decay of an unbounded LDOS
and the probability for the initial state reconstruction due to
the energy bounds. The point in time where this so-called
survival collapse [48, 49] occurs increases monotonically
with the largest ratio (Elow,up � E0)/�0, where Eup is the
LDOS upper bound [50].

Since the referee commented that “there are no rigorous
analytical results”, maybe the inclusion of the following
equation inside the body of the paper could be useful.

The Fourier transform of a Gaussian LDOS with lower and

FIG. 2: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =
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L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 3: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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(see the exact expression in [51]). In Fig. 3 (b), despite
fluctuations caused by finite-size effects, we indeed observe
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FIG. 4: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).
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FIG. 5: (Color online) LDOS (a), F (t) (b) and f(t) (c) for the Néel
state evolving under the chaotic H (4) with � = 1, � = 1/2, open
boundaries. In (a): numerical LDOS (shaded area) and Gaussian
envelope (solid line) with �0 =

p
L� 1/2 and E0 = �[�(L �

1)+ (L� 2)�]/4; L = 16 [8]. In (b): log-log plot for the numerical
F (t) (solid), its time average (dashed), analytical Gaussian decay
(dotted), and F̄ = IPR0 (horizontal line); L = 24. In (c): f(t) for
L = 22 (light), L = 24 (dark), and �(1/L) ln(t�2) (dashed).

Corroborating this result, we found the exponent � = 2

also for periodic boundary conditions, chaotic models with
different values of � and �, including � = 0, other initial
states, and for the XXZ model with small random magnetic
fields (see figures in [51]). A t�2 decay has also been
speculated for the chaotic Ising model with longitudinal and
transverse fields [54].

The exponent � = 2 indicates that the LDOS is ergodically
filled, as corroborated also by computing the inverse participa-
tion ratio of the initial state. We have found that IPR0 / D�1,
as in full random matrices.

To compare different system sizes, we show in Fig. 5 (c),
the rescaled survival probability f(t) = �(1/L) lnF (t) [52].
For L � 1, this quantity is independent of L [53]. The t�2

behavior is once again evident.
Our results for the long-time decay of F (t) fall within Case
1(i). From the analytical expression (5), F (t � ��1

0 ) '

At�2 [51], where A depends on L, E0, and the energy
bounds, it is clear that for the largest system size, the survival
probability goes to zero as t ! 1, indicating that the LDOS
is absolutely integrable. The exponent � = 2 is therefore an
indicator of the ergodic filling of the energy distribution of the
initial state and consequently of the viability of thermaliza-
tion.

Algebraic decays faster than t�2 also signal the ergodic fill-
ing of the LDOS. They are possible if instead of two-body in-
teractions, many-body random interactions are included. As
the number of particles that interact simultaneously grows,
increasing the number of uncorrelated nonzero elements in
the Hamiltonian matrix, the density of states transitions from
Gaussian to semicircle [12]. This transition is reflected also
in the shape of the LDOS [8, 55–57]. The Fourier transform
of a semicircle leads to F (t) = [J1(2�0t)]

2/(�2
0t

2
), where

J1 is the Bessel function of the first kind [8]. The decay at
short times is faster than Gaussian and the asymptotic expan-
sion for long times reveals a powerlaw decay with � = 3,
F (t � ��1

0 ) ' [1 � sin(4�0t)]/(2⇡�
3
0t

3
). This scenario co-

incides with Case 1(ii), where for the semicircle, ⇠ = 1/2,
⌘(E) = (2⇡�2

0)
�1

(2�0�E)

1/2, and Elow = �2�0. To illus-
trate the increase of the value of the powerlaw exponent from
2 to 3, we consider a powerlaw band random matrix (PBRM)
[58–60]. PBRMs have being extensively used in studies of the
metal-insulator transition.

Despite the success of FRM in the statistical analysis of
complex systems spectra, they imply the unphysical scenario
of all particles interacting simultaneously. Band random ma-
trices were introduced [55] in an effort to better approach
random matrices to real systems, for which the Hamiltoni-
ans written in a mean field basis are indeed banded. In the
PBRMs that we consider [61], time reversal symmetry is
preserved and the elements are real random numbers from
a Gaussian distribution, so that hHnni = 0, hH2

nni = 2,
hH2

nmi = 1/[1 + |(n � m)/b|2] for n 6= m, and b > 1.
The value of b determines how fast the elements decrease as
they move away from the diagonal. For b ! 1, we recover a
FRM from a Gaussian orthogonal ensemble [47].

In Fig. 6 (a), we show the survival probability for PBRMs
with different values of b. As b grows from 50 to D and the
LDOS transitions from Case 1(i) to Case 1(ii), the exponent
� increases from ⇠ 2 to 3. In contrast, as b decreases below
50, the eigenstates become less spread out, the LDOS more
sparse, and � decreases below 2. PBRMs therefore provide a
general picture of the behavior of the survival probability, cov-
ering all values of �, without restriction to a specific model.

Case 2: Powerlaw decay caused by correlations.– Power-
law exponents smaller than 1 have been verified in disordered
systems undergoing localization. Such small powerlaw expo-
nents reflect the onset of multifractal eigenstates and of corre-
lations of eigenstates of different energies [29–32, 35, 36] and
are thus associated with lack of ergodicity.

Here, we show that � < 1 appears also for high energy
states projected onto clean noninteracting integrable models.
This is the case of site-basis vectors evolving under the XX
model, for which E0 = 0.

Let us start with the Néel state evolving under a closed

Ergodic

 γ ≥ 2

PR0 ≡
1

|Cα
(0) |4

α=1

Dim

∑
∝Dim

Ergodically filled LDOS
Power-law decay caused by energy bounds

PR0 ∝Dim

New Criterion for Thermalization
Távora, Torres, LFS

PRA 94, 041603R (2016)
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Band random matrices

t−3

t−γ

Hnm
2 =

1

1+ n−m
b

2

0 ≤ γ ≤ 3

Power-law band random matrices, Wigner band random matrices 

 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Távora, Torres, LFS
PRA 94, 041603R (2016)
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Correlation hole

F(t)

F(t)

F(t)

Torres & LFS, arXiv:1702.04363
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Correlation hole
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Ensemble Average

òååååå ---

¹

-- +=+=÷÷
ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ
= dEeEGCeCCCeCeCtF iEtinitEEiiniiniinitiEinitiEini )()(

4)(
22422

a
a

ba
ba

a
a

b
b

a
a

baba

( )å
¹

--=
ba

baba d )()(
22

EEECCEG iniini

Spectral autocorrelation function



Lea F. Santos,   Yeshiva University NMP17, East Lansing, MI

Two-level correlation function
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Correlation hole: linear increase
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Correlation Hole: Full Random Matrices
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Analytically Continued Partition Function
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Analytically Continued Partition Function
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Full Random Matrices: Analytical Expression

Torres et al, 
Entropy 18, 359 (2016) 

Wn (t) = φn | e
−iHt |Ψ(0)

2

Flambaum
& Izrailev
PRE (2012)
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Summary

Ø Exponential/Gaussian decays appear in integrable and chaotic models.
indicates delocalized initial states.
determined by the shape and width of the LDOS.

Ø Correlation hole emerges before saturation.
is an unambiguous signature of level repulsion.
is an indicator of the chaos-integrable transition.
is an indicator of the delocalized-localized transition.

Ø Power-law decay at longer times captures the filling of the LDOS.
caused by energy bounds or correlations.

A criterion to anticipate thermalization from the dynamics.

Ø Analytical expressions from full random matrices serve as bounds 
and references for the analysis of realistic models.
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PR(α ) ∝Dim

Sh(t) = − Wn (t)lnWn (t)
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∑

Wn (t) = φn | e
−iHt |Ψ(0)
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h = 0.2

h = 0.8

Sv(t) = −Tr[ρA (t)lnρA (t)]
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Correlation hole

F(t)

F(t)

F(t)

FFRM (t) =
Dim−3

Dim(Dim−1)
Dim

J1(2σinit)
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σ 2
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σini
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Derivation of the analytical expression for the survival probability

The survival probability is

Wn0(t) =
��hn0|e�iHt|n0i

��2 =

�����
X

↵

|C↵
n0
|2e�iE↵t

�����

2

=
X

↵

|C↵
n0
|4 +

X

↵ 6=�

|C↵
n0
|2|C�

n0
|2e�i(E↵�E�)t (1)

Taking the average over disorder of Eq. (1) denoted by h. . . i we have

hWn0(t)i = h
X

↵

|C↵
n0
|4i+

X

↵ 6=�

h|C↵
n0
|2|C�

n0
|2e�i(E↵�E�)ti = hIPRn0i+

X

↵ 6=�

h|C↵
n0
|2|C�

n0
|2ihe�i(E↵�E�)ti (2)

Where statistical independence between eigenstates components and energy eigenvalues have been assumed
in the second equality of Eq. (2).

Now we focus in the average regarding the eigenvalues and write

he�i(E↵�E�)ti =
Z
h�(E � E↵ + E�)ie�iEtdE (3)

The average of the delta function in Eq. (3) is terms of the distribution P ,

h�(E � E↵ + E�)i =
Z

�(E � E1 + E2)P (E1, E2, . . . , EN )dE1dE2 · · · dEN (4)

=
(N � 2)!

N !

Z
�(E � E1 + E2)R2(E1, E2)dE1dE2 (5)

=
(N � 2)!

N !

Z
�(E � E1 + E2)[R1(E1)R1(E2)� T2(E1, E2)]dE1dE2. (6)

In order to get the second line we have used

R2(E1, E2) =
N !

(N � 2)!

Z
P (E1, E2, . . . , EN )dE3dE4 · · · dEN . (7)

And for the third line
R2(E1, E2) = R1(E1)R1(E2)� T2(E1, E2), (8)

where R1(E) is the level density distribution function given by

R1(E) =
1

⇡

p
2N � E2 = N

8
<

:
2

⇡(2N)1/2

s

1�


E

(2N)1/2

�2
9
=

; , |E|  (2N)1/2, (9)

and T2 is the two-level cluster function related to its normalized version by

T2(E1, E2) = ��2Y2(E1/�, E2/�) = ��2Y2(�E/�), (10)

with �E = E1 � E2 (Y2 is a function only of the di↵erence �E) and � = 1/R1(0) = ⇡(2N)�1/2 being the
mean level spacing.

Then we write

h�(E � E↵ + E�)i =
(N � 2)!

N !

Z
�(E � E1 + E2)[R1(E1)R1(E2)� ��2Y2(�E/�)]dE1dE2. (11)
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In practice, GOE full random matrices can be obtained by generating a matrix with D2 random
numbers and then adding it to its transpose. The density of states of full random matrices follows the
standard semicircle distribution [34],

r

DOS(E) =
2

pE

s

1 �
✓

E
E

◆2
, (2)

where 2E is the length of the spectrum, that is �E  E  E .
A key property of full random matrices and a main feature of quantum chaos is the strong

repulsion between neighboring levels, as captured, for example, by the nearest-neighbor level spacing
distribution P(s), where s is the spacing between neighboring rescaled energies. The unfolding
procedure [9] guarantees that the mean level spacing of the rescaled eigenvalues is one. For the
unfolded spectrum of GOE matrices, one finds:

P(s) =
ps
2

exp
✓
�ps2

4

◆
. (3)

This contrasts with the level spacing distribution of a sequence of uncorrelated eigenvalues,
where the levels are not prohibited from crossing and the distribution is Poisson, P(s) = exp(�s).
Level repulsion causes the rigidity of the spectrum. As a result, the variance S2(`) of the number of
unfolded eigenvalues in an interval of length ` grows logarithmically with `. For the GOE, one has:

S2(`) =
2

p

2

✓
ln(2p`) + ge + 1 � p

2

8

◆
, (4)

where ge = 0.5772 . . . is Euler’s constant. The level number variance of full random matrices is
between the linear dependence S2(`) = ` found for uncorrelated eigenvalues and S2(`) = 0 reached
by the completely rigid spectrum of the harmonic oscillator. P(s) and S2(`) are complementary.
The former characterizes the short-range fluctuations of the spectrum, and the latter characterizes the
long-range fluctuations. Both are shown in Figure 1a,b, respectively.
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Figure 1. We consider a Gaussian orthogonal ensemble (GOE) full random matrix. Top panels:
level spacing distribution (a) and level number variance (b). Bottom panels: Shannon information
entropy (c) and von Neumann entanglement entropy (d) for all eigenstates. Horizontal solid lines
give ln(0.48D) in (c) and ln(0.48DA) in (d). The horizontal dashed line in (d) corresponds to
Srand

vN = lnDA � 1/2. The random numbers of the full random matrix are rescaled so that E ⇠ 4.
We choose D = 16!/8!2 = 12870 and DA = 28 = 256 in analogy with the matrix sizes used in Section 3.
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Shannon and Entanglement Entropy
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k
∑

Shannon entropy Entanglement entropy

Sv(t) = −Tr[ρA (t)lnρA (t)]

h=0.3
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d>1, Effectively Break the Chain

Hinitial = HXXZ = J(σ n
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z
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d >1 breaks the chain
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L=16, 8 up spins Δ = 0.48

F(t) = cos2 (dt / 2)exp(−σ 2t2 )

d=8

Torres & LFS
PRA 90 (2014)

integrable

Cα
ini 2

impurity model

σ Hσ A ≥
[H,A]
2i

=
1
2
d A
dt

Mandelstam-Tamm relation

F(t) ≥ cos2 (σ init)
t < π / (2σ ini )
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Energy-time uncertainty relation


