
Balancing agility and gate-keeping
The LArSoft development model

Erica Snider

Fermilab

June 22, 2016

June 22, 2016 Balancing agility and gate-keeping in LArSoft 2

The tension in code development

 Two competing desires common in code development

– Ability to introduce new ideas,
new features quickly

● Minimal time spent in design

● Low barriers to writing code,
getting into releases

● Just make it work!

– Writing production quality code

● Well tested

● Well thought-out, integrated design

● Usually considerable re-writing
en route

Like many software projects, LArSoft benefts from both attributes
in ample quantities

June 22, 2016 Balancing agility and gate-keeping in LArSoft 3

The tension in code development

 Two competing desires common in code development

– Ability to introduce new ideas,
new features quickly

● Low barriers to getting code
into releases

● Minimal time spent in design

● Just make it work!

– Writing production quality code

● Well tested

● Well thought-out, integrated design

● Usually considerable re-writing
enroute

Like many software projects, LArSoft benefts from both attributes
in ample quanities

Both important to 'usability'

 Users depend on 'production quality'

 Developers on 'agility'

 But also 'production quality' as a
 foundation for development

So need to examine the LArSoft
development model

June 22, 2016 Balancing agility and gate-keeping in LArSoft 4

The LArSoft development model

 Documented on the LArSoft wiki:
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Developing_With_LArSoft

 The steps

– Designing

● Decide how to structure the solution

– Writing code

● Standards!!

– Building

● mrb, cmake, maybe cetbuildtools and its confguration for art, LArSoft

– Testing

– Documenting

– Getting code into a LArSoft release

● Must follow a procedure

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Developing_With_LArSoft

June 22, 2016 Balancing agility and gate-keeping in LArSoft 5

The LArSoft development model

 Documented on the LArSoft wiki:
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Developing_With_LArSoft

 The steps

– Designing

● Decide how to structure the solution

– Writing code

● Standards!!

– Building

● mrb, cmake, maybe cetbuildtools and its confguration for art, LArSoft

– Testing

– Documenting

– Getting code into a LArSoft release

● Must follow a procedure

For our purposes today, only care about these

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Developing_With_LArSoft

June 22, 2016 Balancing agility and gate-keeping in LArSoft 6

Contributing code

 How do we go about contributing code to LArSoft?

– Create a branch in some repository

– Create / modify and test code

– Next steps depend on the type of change

● Changes that do not afect behavior

– Just merge into develop

● New code or features that do not change dependencies, bug fxes

– Merge into develop

– Discuss at LArSoft Coordination Meeting to make people aware of the change

● New code that introduces new dependencies, that breaks existing code or data,
that alters behavior

– Discuss at LArSoft Coordination Meeting

– Upon approval, LArSoft team merges into develop during release creation procedure

– Weekly integration releases to incorporate changes

June 22, 2016 Balancing agility and gate-keeping in LArSoft 7

Contributing code

 How do we go about contributing code to LArSoft?

– Create a branch in some repository

– Create / modify and test code

– Next steps depend on the type of change

● Changes that do not afect behavior

– Just merge into develop

● New code or features that do not change dependencies, bug fxes

– Merge into develop

– Discuss at LArSoft Coordination Meeting to make people aware of the change

● New code that introduces new dependencies, that breaks existing code or data,
that alters behavior

– Discuss at LArSoft Coordination Meeting

– Upon approval, LArSoft team merges into develop during release creation procedure

– Weekly integration releases to incorporate changes

In most cases, a discussion of some
sort at the LArSoft CM is required

Prior to integrating code, additional
work may be requested.

June 22, 2016 Balancing agility and gate-keeping in LArSoft 8

What you need to know frst

 Policies, guidelines and
standards at all levels

– LArSoft design principles
LArSoft concepts (on larsoft.org)

Design principles (on larsoft.org)

Architecture document

http://larsoft.org/important-concepts-in-larsoft/
https://cdcvs.fnal.gov/redmine/projects/larsoft-architecture/repository/revisions/master/raw/output/LArSoftArchitecture.pdfhttps://cdcvs.fnal.gov/redmine/projects/larsoft-architecture/repository/revisions/master/raw/output/LArSoftArchitecture.pdf
http://larsoft.org/important-concepts-in-larsoft/code-organization/

June 22, 2016 Balancing agility and gate-keeping in LArSoft 9

What you need to know frst

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

LArSoft

– Coding guidelines and conventions

– Guidelines on writing/using services

– Guidelines on writing/using algorithms

art

– art module design guide

– Data product design guide

– Guidelines for the use of pointers

C++

– Lots of online resources...

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/The_rules_and_guidelines
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Writing_LArSoft_service
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Writing_LArSoft_algorithms
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_Module_Design_Guide
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Guidelines_for_the_use_of_Pointers

June 22, 2016 10

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

– Git branching model

LArSoft git guidelines / branching model

What you need to know frst

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_git_Guidelines

June 22, 2016 11

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

– Git branching model

– Documentation guidelines

 The context for your code

– Organization of the code

Repositories and their dependencies

larcore

lardata

larcoreobj

lardataobj

larevt

larsim

larreco

larana

larpandora

lareventdisplay

larexamples

larsimobj

What you need to know frst

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_LArSoft_repositories_packages_and_dependencies_

June 22, 2016 12

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

– Git branching model

– Documentation guidelines

 The context for your code

– Organization of the code

– art API

The art wiki

What you need to know frst

Also art.fnal.gov

https://cdcvs.fnal.gov/redmine/projects/art/wiki
http://art.fnal.gov/

June 22, 2016 13

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

– Git branching model

– Documentation guidelines

 The context for your code

– Organization of the code

– art API

– Relevant existing code

What you need to know frst

14

 Policies, guidelines and
standards at all levels

– LArSoft design principles

– Coding guidelines

– Git branching model

– Documentation guidelines

 The context for your code

– Organization of the code

– art API

– Relevant existing code

 Tools

– mrb, cmake, cetbuildtools,
debuggers, proflers, CI
system...

What you need to know frst

June 22, 2016 Balancing agility and gate-keeping in LArSoft 15

The point of this model

 Focus is on

– producing shareable, relatively uniform code

– maintaining a stable development environment

● This is balanced with recency (i.e., proximity to the head of develop branch)

– fnding consensus across experiments for changes

– managing integration and deployment of changes

In short: on gate-keeping

 Good for users, but takes from agility, usability for developers

– Steep learning curve

– Multiple barriers to rapid development

– Haven't even discussed other aspects of development environment, eg,
built speed.

16

Finding the right balance

 Want to fnd the sweet spot for the general case

– Enough agility to keep people interested in producing code

– Enough gate-keeping to keep people using it

 Are we in the right spot?

– Meetings?

● Important to discuss changes before they happen

● Also facilitate discussions about

– improvements. other changes afecting lots of people

– priorities, policies, procedures, etc.

● But is the present requirement reasonable?

– Standards and policies?

– Would structuring releases diferently help?

– Would structuring code diferently help?

– Changes to development environment that might help?

June 22, 2016 Balancing agility and gate-keeping in LArSoft 17

Discuss amongst ourselves...

June 22, 2016 Balancing agility and gate-keeping in LArSoft 18

...then coffee break

June 22, 2016 Balancing agility and gate-keeping in LArSoft 19

The end

