
Tracking
• Fundamental issues in tracking or how to design a 

tracker ?
• Silicon detectors
• New ideas and developments for the HL-LHC

D. Bortoletto University of Oxford
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Tracking detectors
• High granularity detectors close to the interaction region providing precise 

measurements of the position of charged particles
– Measure the trajectory using “hits” to determine the momentum of charged 

particles from their curvature in a magnetic field
– Extrapolate to the origin and reconstruct

• Primary vertices and identify the vertex associated with the “hard” interaction
• Secondary vertices to identify tau-leptons, b and c-hadrons by lifetime tagging 

– Reconstruct strange hadrons, which decay in the detector volume
– Identify photon conversions and nuclear interactions
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LHC physics program
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CMS:𝜰 resonancesATLAS: 
Reconstructed 
Higgs event



Momentum Measurements
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Lorentz Force

Motion transverse to 
an uniform B field

• The determination of the momentum (and charge) of charged particles can 
be performed by measuring the bending of a particle trajectory (track) in a 
magnetic field

• Use layers of position sensitive detectors before and after 
or inside a magnetic field to measure a trajectory and 
determine the bending radius

• The tracker configuration depends critically on the choice 
of the magnet



Forward Spectrometers
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Dipole LHCb NI = 4Tm

• Particle deflected in x - z plane
• Tracking detectors are arranged in parallel planes along z
• Bending from difference of the slopes before and after magnet

Plane 
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LHCb A Forward Spectrometer
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LHCb A Forward Spectrometer
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VELO

Muon det Calo’s RICH-2 MagnetOT RICH-1

D. Bortoletto HCP Summer School 2016



Central Detectors

D. Bortoletto HCP Summer School 2016 8

Solenoid CMS 4T, Atlas 2T

• Magnetic field along the beam
• Particle deflected in x –y ( r - 𝜙 ) plane
• Tracking detectors are arranged in 

cylindrical shells along r
• Measurement of curved trajectories on 

r- 𝜙 planes at fixed r

Cylindrical 
symmetry



Magnetic Spectrometers
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Toroid Atlas 0.5T

• Deflection in (r - z) – plane
• Tracking detectors are arranged in 

cylindrical shells providing measurement of 
curved trajectories in r-z planes at fixed r

Azimuthal symmetry



CMS
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Tracking in ATLAS
• Collision event
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Tracking in a solenoidal B 
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• The trajectory of a charged particle in a uniform B field  
along the beamline is a helix
– Transverse (xy) and Longitudinal (rz) 

projections. 
– Φ=azimuthal angle is measured in 

transverse plane
– θ=polar angle is measured from z axis
– Dip, λ = π/2 - θ
– Pseudorapidity, h = -ln tan (q/2)
– Transverse momentum, pT =p sinq
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Tracking in a solenoidal B 
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• Impact parameter d0

θ



The Helix … seen in an 
experiment

• For small momenta y is a periodic function of z
• For large momenta we have a straight line as a function of z
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What we need to do?
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• For central detector 
configurations with 
solenoid magnets
– the error on the radius 

measured in the bending 
plane r – φ

– the error on the dip angle 
in the r - z plane

– The contribution of 
multiple scattering to the 
the momentum resolution

• In a hadron collider like 
LHC the main emphasis 
is on transverse 
momentum measurement

• Measure the transverse 
momentum and the dip angle λ

• The error on the momentum is 
given by the measurement errors 
on the curvature radius R and the 
dip angle λ



Assume: L=4m, B=1T and p=1TeV  
Then: R = p/(0.3 B) = 1000 / 0.3 = 3300 m, and s ≈16/(8*3300) ≈0.6 mm 
If we want to measure the momentum with Δp/p ≈Δs/s ≈10% (at p = 1 TeV) we need: 
Δs/s ≈60 μm

Momentum measurement 
• Motion transverse to uniform B field
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Measure the sagitta, s, from radius of 
curvature, R. If s<<L

Good relative momentum requires small ss, 
strong B field, long path length L (as L2➠ often 

use beam constraint). 
Momentum resolution gets worse at large pT



Momentum resolution

• For N measurements all with the uncertainty

Statistical factor AN = 720   (Gluckstern factor), 
NIM, 24, P381, 1963

y

x

z

• Let us assume that we have 3 measurements of the position of the 
particle

Small ss➠ small srfand large N (many measurement 
points, but only as √N)
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Multiple scattering

• This introduces an error on the sagitta
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• Multiple scattering is reduced by: low Z, thin materials, long X0

• A charged particle in medium undergoes random deflections caused:
– by multiple (Coulomb) scattering off the core of atoms
– single large (Rutherford) scattering



Momentum resolution
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• The point error, srf, has a part from intrinsic measurement 
precision and a multiple scattering part. Therefore:

Radiation length=mean length of a 
material to reduce the energy of an 
electron by 1/e. It can be approximated as:

• Thickness of detector often 
expressed in 'fraction of 
radiation length’ x/X0:
– 1 meter air: x/X0 = 0.003
– 300 micron silicon: 

x/X0 = 0.003
– 1 mm iron: x/X0 = 0.06

Good momentum resolution requires long 
Xo , and therefore small Z and thin materials



Total momentum resolution
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Inner 
tracker

This is the best you 
can do

MS



Estimate the ATLAS 
momentum resolution

• Simplification:
– Assume high momenta (no MS)
– Rmin = 5.05 cm, Rmax = 1082cm
– Pixels (5cm to 12cm) 

• N=3 (up to 2012), σ = 12μm
– SCT (30cm to 55cm) 

• N=4 layers, σ = 16 μm
– TRT (55cm to 105 cm) 

• N = 36, σ = 170 μm
• Use as a single point with σ = 28 

μm at R = 80 cm (= Rmax⇒ L = 75 
cm)

– N = 3 + 4 + 1 = 8
– σ = 12, 16, 28 μm➠

< σ > ~16 μm
– L=75 cm
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Estimate: ATLAS momentum 
resolution
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• B=2T, L=0.75m

• At pT=500 GeV



Vertex 
reconstruction

• Use reconstructed tracks, to extrapolate 
back and find the primary vertex

• To maximise the physics potential, LHC 
runs in a regime of multiple 
instantaneous collisions: pile-up

• Pile-up renders tracks reconstruction 
and vertex finding more complex: more 
seeds and CPU time explodes
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Lifetime tagging
• Tracks with significant impact 

parameter, d0, can be used to form a 
reconstructed secondary vertex
– Essential to study the heavy quarks (t, 

b, c)
– Tagging the Higgs since BR(H→ 𝑏𝑏%) ≈ 

58%
– Studying the Higgs potential (HH) 
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Example of a fully reconstructed
event from LHCb,
with primary, secondary
and tertiary vertex.



Impact parameter resolution
• Vertex extrapolation

– Linear (B=0)

– Parabolic (with B field)
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• Linear 
approximation

r= extrapolation 
length

Beam Pipe 

First Layer MULTIPLE
SCATTERING

rB



Impact parameter resolution
• In the linear case
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• To have good impact parameter resolution:
• Small measurement errors σmeas
• Large lever arm L➠ r
• Place measurement plane as near as possible to the production point: 

small x0➠ r
• Limit multiple scattering ➠ Low Z thin beam pipe and measurement 

layers 
• Increasing number of points also improves the d0 resolution  (1/√N)



Example ATLAS
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• ATLAS Pixel detector
– N = 3, 𝜎= 10 μm
– x1 = 5.05 cm
– x2 = 8.85 cm
– x3 = 12.25 cm
– L = 7.2 cm
– r = x2/L = 1.22

• Neglecting Multiple scattering 

– With IBL: N = 3, 𝜎= 10 μm and 
x1 = 3.55 cm

ATLAS IBL



Tracker resolution with MS
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• Momentum resolution:

• Impact parameter resolution:

• For low pT tracks the momentum resolution and the impact parameter 
resolution are dominated by multiple scattering

• The amount of material traversed by the particles depends on polar angle

• The MS error and the point measurement 
error are independent of each other,

• The total error is the sum in quadrature of 
the 2 terms 

• ATLAS detector Monte Carlo studies show:



Systematic effects
• Alignment
• Knowledge of the B field
• Material
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Tracking is more challenging

D. Bortoletto HCP Summer School 2016 30

MARK-I detector (SLAC)
e+e- @ 3 GeV 

Y´ (excited state of J/Y)

Top quark discovery at CDF and D0 
pbarp @ 1,8 TeV 

Simulation: 
Higgs boson at LHC



Tracking at the LHC
• ~1200 tracks every 25 ns or ~ 1011/second

– high radiation dose 1015 neq / cm2 / 10 yrs
– 600 kGy (60 Mrad) through the ionisation of mips in 250 μm bulk silicon

• Vertexing is critical to distinguish high pT collision from pile up:
– LHC has a Gaussian sigma along the beam direction of ∼ 8 cm
– Vertices of the different inelastic collisions are separated by ≈1 cm on average

• Tracker must deal with very complex pattern recognition  
– Many measurement layers

• Complexity increases as a function of the occupancy ( <number of hits>/ event in 
one elementary detector element)
– Need to have occupancy <1%

• Most particles are inside the detector  in the next bunch crossing
– high pT particles travel ≈7 m from the interaction point in 25 ns
– low pT particle may curl 2–3 times inside the tracker
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Requiements:
• Response times of the detector elements and their read-out 

electronics must be fast enough to process the event in less 
than 25 ns to minimize the pile-up to one bunch crossing;

• High granularity to keep the occupancy low;

• All elements of the detector, including active material, read-

out electronics and cables must be rad-hard.



Tracking and Vertex Detectors
§ Solid state detectors especially silicon offer high segmentation
§ Determine position of primary interaction vertex and secondary decays 
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• Lifetime tags to identify B-
hadrons (or tau leptons,...)
• Impact parameter (IP)
• Measurement of 

secondary vertex
• precision track reconstruction 

essential since cτ ≈ 500 μm

This would have not been possible 
without semiconductor (pixel and strip) 

trackers



• The interaction of a particle with matter 
can be used as a working principle for a 
particle detector.

• The interaction of a particle with matter 
impact the precision of the measurement
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Measuring Muons
CMS:
• measurement of momentum 

in tracker and B return flux;
• Solenoid with Fe flux return
• Property: μ tracks point back 

to vertex in r-z plane

D. Bortoletto HCP Summer School 2016 35



Measuring Muons
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ATLAS
• standalone μ momentum 

measurement
• Air-core toroid safe for high 

multiplicities
• Property: σp flat with η



Silicon Detectors
• A silicon detector is a p-n diode

– n-type ( P, As, Sb doping ➠ more electrons)
– p-type (B, Al, Ga doping➠ more holes)

The space charge (depletion) 
region can be made bigger by 
applying a reverse bias voltage

N-TYPEP-TYPE

p-n junction without external voltage
– Free charges diffuse until equilibrium is reaches 

and create the built-in potential

The W of the  depletion region can be found by 
applying Poisson equation and depends on V 
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p+-n sensors
• P+-n sensors consists of a thin (~μm), highly doped p+ (~1019

cm-3) layer on lightly doped n- (~1012 cm-3) substrate
• Since NA>>ND most of the n-type silicon is depleted

V … External voltage
𝜌….. resistivity
μ … mobility of 

majority charge 
carriers

Neff..effective doping 
concentration

𝑊~ 2𝜀,𝜀-𝜇𝜌 𝑉
�

𝜌 =
1

𝑒𝜇𝑁5
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Signal
• The signal generated in a silicon detector 

depends on the thickness of the depletion 
zone and on the dE/dx of the particle. 
– The distribution is given by the Landau 

distribution

– In silicon the most probable dE/dX of a 
MIP is  300 eV/μm and the mean 
ionization energy I0 = 3.62 eV.  Therefore a 
charged particle creates ≈80 e-h+/ μm. 

– For 300 μm silicon the most probable 
charge is ≈ 24000 e-/h pairs
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Mean charge
Most probable charge ≈ 0.7´ mean



Collection by drift
• Electrons an holes move in an E field F=qE
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The time required for a carrier to 
traverse the sensitive volume is the 
collection time. 

The collection time can be reduced by 
over-biasing the sensor

ve,h=𝛍e,h E

10 ns
30 ns



DC Silicon Strip Detectors
• The drift (current) creates a signal which 

is amplified by an amplifier connected to 
each strip allowing precise position 
determination

• Standard configuration:
– p+n junction: NA ≈ 1019 cm-3, ND ≈ 1–

5∙1012 cm-3

– Substrate n doped (~2-10 kΩcm)  
and ~300μm thick 

– n+ layer on backplane to improve 
ohmic contact

– Aluminum metallization
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𝑁788= 𝑁5 − 𝑁:,<



AC coupled Strip Detector  
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AC coupling blocks DC leakage current
Integration of coupling capacitances in standard 
planar process. 
– Deposition of SiO2 with a thickness of 100–200 

nm between p+ and aluminum  strip
– Increase quality of dielectric by a second layer of 

Si3N4. 
Coupling capacitance ≈ 8–2 pF/cm
Long poly silicon resistor with R>1MΩ to connect 
the bias voltage to the strips: 



A typical strip module (CMS) 
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Pixel detector
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• Advantages
– Pixel detectors provides space-point 

information removing hit ambiguities
• Small pixel area 

– low detector capacitance (≈1 fF/Pixel) 
– large signal-to-noise ratio (e.g. 150:1). 

• Small pixel volume
– low leakage current (≈1 pA/Pixel)

• n+-on n for the LHC
– Electron have faster collection time

• Disadvantages: 
– Large number of readout                   

channels 
– Large bandwidth 
– Large power consumption 
– Bump bonding is costly and          

complex
https://www.youtube.com/watch?v=ojeVwQxOrGo&feature=youtu.be



Readout
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• The signal of a silicon detector is readout by a charge sensitive amplifier

• The most simple CSA has a feedback capacitor Cf between the input and output 
stores the charge from the detector.

• The gain of the preamplifier is 1/Cf.
• The resistor in parallel with the feedback capacitor can be used to reset the CSA
• Each pulse of current from the detector causes on output voltage proportional to the 

integral of the detector current



Readout Noise 
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• Noise is given as 
“equivalent noise 
charge” ENC. 

Reference
Rossi, Fischer, 
Rohe, Wermes
Pixel Detectors
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Noise
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Position resolution
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• Typical pitch (distance between 
strips) 100-50 𝞵m➠𝜎x≃10-30 𝞵m

• Strip detector with binary readout

• One can do better with analog 
readout

𝜎> =
𝑝
12�

𝜎> ∝
𝑝

𝑆𝑁𝑅

Low probability δ(E) release  
additional electrons drifting 
perpendicularly to the track and 
spoiling position resolution

• External parameters
– Binary readout or read out of analogue signal value
– Distance between strips/pixels (pitch)
– Signal to noise ratio

• Physics processes:
– Diffusion of charge carriers
– Statistical fluctuations of the 

energy loss

• The position resolution depends on various factors



Material
• Reconstruction of photon conversions (g→e+e-) can provide 

precise map of the material
– The number of photon conversion in a volume ≈ amount of 

material x  reconstruction efficiency
– The reconstructed vertices can be used to build detailed maps of 

the Tracker material
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DATA MC



Position resolution
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• Resolution is the spread of the reconstructed position minus the true position

σ =
pitch
12

σ ≈
pitch

1.5 ⋅ 12

RL

R

PHPH
PH
+

=

One strip 
clusters

Charge 
sharing



Tracking at the LHC
• ~1200 tracks every 25 ns or ~ 1011/second

– high radiation dose 1015 neq / cm2 / 10 yrs
– 600 kGy (60 Mrad) through the ionisation of mips in 250 μm bulk silicon

• Vertexing is critical to distinguish high pT collision from pile up:
– LHC has a Gaussian sigma along the beam direction of ∼ 8 cm
– Vertices of the different inelastic collisions are separated by ≈1 cm on average

• Tracker must deal with very complex pattern recognition  
– Many measurement layers

• Complexity increases as a function of the occupancy ( <number of hits>/ event in 
one elementary detector element)
– Need to have occupancy <1%

• Most particles are inside the detector  in the next bunch crossing
– high pT particles travel ≈7 m from the interaction point in 25 ns
– low pT particle may curl 2–3 times inside the tracker

D. Bortoletto HCP Summer School 2016 51



The LHC detectors
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The LHCb- VELO  strip \ The ATLAS SCT stripThe CMS TIB strip

The ATLAS pixel 

pixel 

The CMS pixel 



The LHC silicon detectors

D. Bortoletto HCP Summer School 2016 53

ATLAS Strips: 61 m2 of silicon, 4088 
modules, 6x106 channels Pixels: 1744 
modules, 80 x 106 channels 

CMS the world largest silicon tracker 200 
m2 of strip sensors (single sided) 11 x 106

readout channels ~1m2 of pixel sensors, 
60x106 channels 

ALICE Pixel sensors, Drift detectors 
Double sided strip detectors 

LHCb
VELO: Si 
Strips 



D. Bortoletto HCP Summer School 2016 54

Comparison of LHC trackers



The LHC Future
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•THE END
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~100 fb-1

~3000 fb-1

7-8 TeV 13-14 TeV

~300 fb-1

Splices 
fixed

Injectors
upgrade

New 
low-β*
quads

Run 1 Run 2 Run 3
HL-LHC

q LIU/HL-LHC Cost & Schedule reviews in March 2015 and October 2016
q ATLAS and CMS: “scoping documents” presented to Resources Review Board October 2015
à scale of funding defined, now proceeding to TDRs
q ALICE and LHCb: major upgrades under construction for installation in LS2

Fabiola Gianotti



HL-LHC tracker upgrades
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• New all-silicon trackers for ATLAS and CMS

• Radiation hardness and rate 
performance must increase compared 
to LHC Run I
– Run 2 (2015) ≈ x5 
– Run 3 (2018) ≈ x 5-10
– HL-LHC (>2025) ≈ x 10-30

• In the inner pixel layers: 
– 1016 neq cm-2and TID > 1 Grad

• Increased luminosity and 
larger area require
– Higher hit-rate capability
– Increased granularity
– Higher radiation tolerance
– Lighter detectors
– Cheaper price tag !!

barrel
endcap

endcap

~200 m2 silicon (strips & pixels)

~ 1014 neq cm-2

~ 1015 neq cm-2

~ 1016 neq cm-2

HL-LHC
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