
New Physics 
Beyond 

the Standard Model

Lian-Tao Wang
University of Chicago

Fermilab, HCPSS 2012,  August 2012

Monday, August 6, 12



TeV frontier at the LHC

- Search is on for new physics beyond the 
Standard Model.
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The Standard Model

• Electroweak symmetry breaking: weak interaction has 
finite range

Force carriers

Strong

Electromagnetic

Weak

Fermi, 1934

Interaction strength
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Expanding the horizon:

• What do we expect at the energy frontier?

Big Questions

–Horizontal–
Why are there three 

generations?

What physics determines 

the pattern of masses 

and mixings?

Why do neutrinos have 

mass yet so light?

What is the origin of CP 

violation?

What is the origin of 

matter anti-matter 

asymmetry in Universe? 
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New physics beyond the SM?

- Why not?
Sure. But we may want to have better arguments, 
and we do (main goal of these lectures). 

- At Hadron colliders, such as the LHC, we need to 
anticipate what may be there. 
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Scenarios, frameworks, models...

- BSM: beyond the SM, besides the SM, below the 
SM, ....
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These lectures

- A quick survey of BSM new physics. 

- Focus on
Motivation. 

Basic ideas, interesting scenarios. 

Signals at hadron colliders (mainly LHC).

- Would not cover all technical details. 
See excellent lectures in previous schools. 

- Related lectures in this school
Sally Dawson: Electroweak theory

Roni Harnik: Dark Matter
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Standard Model needs to be extended.

• Therefore, this picture is not valid at  

• Something new must happen before TeV scale. 

• Simplest new physics:  

• The Higgs boson, a spin-0 neutral particle. 

• Higgs field can give mass to both electrons and gauge 
bosons (W, Z).

W+

W−
W−

W+E

E

Consider: 

Growing stronger at higher energy.  
Perturbative unitarity breaks down.
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Higgs discovered! (likely)

- We have discovered something looks like a Higgs. 
We need to test whether it is the Higgs boson.
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1� and ±2� uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H!WW (⇤)! `⌫`⌫ channel, as
shown in Fig. 8(c).

The observed local p0 values from the combination
of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5 GeV, where it reaches
6.0�, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9� (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H!ZZ(⇤)! 4`, H! �� and
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Figure 8: The observed local p0 as a function of the hypothesized
Higgs boson mass for the (a) H!ZZ(⇤)! 4`, (b) H! �� and (c)
H!WW(⇤)! `⌫`⌫ channels. The dashed curves show the expected
local p0 under the hypothesis of a SM Higgs boson signal at that mass.
Results are shown separately for the

p
s = 7 TeV data (dark, blue), thep

s = 8 TeV data (light, red), and their combination (black).

H!WW (⇤)! e⌫µ⌫ channels combined is 4.9�, and oc-
curs at mH = 126.5 GeV (3.8� expected).

The significance of the excess is mildly sensitive to
uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
e↵ect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9�.

The global significance of a local 5.9� excess any-
where in the mass range 110–600 GeV is estimated to
be approximately 5.1�, increasing to 5.3� in the range
110–150 GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].
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Figure 13: The CLs values for the SM Higgs boson hypothesis as a function of the Higgs boson
mass in the range 110–145 GeV. The background-only expectations are represented by their
median (dashed line) and by the 68% and 95% CL bands.

7.1 Significance of the observed excess

The consistency of the observed excess with the background-only hypothesis may be judged
from Fig. 14, which shows a scan of the local p-value for the 7 and 8 TeV data sets and their
combination. The 7 and 8 TeV data sets exhibit an excess of 3.2 σ and 3.8 σ significance, re-
spectively, for a Higgs boson mass of approximately 125 GeV. In the overall combination the
significance is 5.0 σ for mH = 125.5 GeV. Figure 15 gives the local p-value for the five decay
modes individually and displays the expected overall p-value.

The largest contributors to the overall excess in the combination are the γγ and ZZ decay
modes. They both have very good mass resolution, allowing good localization of the invariant
mass of a putative resonance responsible for the excess. Their combined significance reaches
5.0 σ (Fig. 16). The WW decay mode has an exclusion sensitivity comparable to the γγ and ZZ
decay modes but does not have a good mass resolution. It has an excess with local significance
1.6 σ for mH ∼ 125 GeV. When added to the γγ and ZZ decay modes, the combined signifi-
cance becomes 5.1 σ. Adding the bb and ττ channels in the combination, the final significance
becomes 5.0 σ. Table 6 summarises the expected and observed local p-values for a SM Higgs
boson mass hypothesis of 125.5 GeV for the various combinations of channels.

Table 6: The expected and observed local p-values, expressed as the corresponding number of
standard deviations of the observed excess from the background-only hypothesis, for mH =
125.5 GeV, for various combinations of decay modes.

Decay mode/combination Expected (σ) Observed (σ)

γγ 2.8 4.1
ZZ 3.6 3.1
ττ + bb 2.4 0.4
γγ + ZZ 4.7 5.0
γγ + ZZ + WW 5.2 5.1
γγ + ZZ + WW + ττ + bb 5.8 5.0

The global p-value for the search range 115–130 (110–145) GeV is calculated using the method
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We have solid evidence that dark matter:

• Exists

• gravitates.

• is dark.
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We have solid evidence that dark matter:

• Exists

• gravitates.

• is dark.
Cannot be SM particle !
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TeV dark matter: WIMP miracle.

• If dark matter is 

• Weakly interacting: 

• Weakscale:

• We get the right relic abundance of dark matter.

• A major hint of TeV scale new physics. 

• We can produce and study them at the LHC!

Stronger coupling, lower abundance.

DM

DM

SM

Rate in thermal eq.

Freeze out: dropping out of thermal eq.
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Naturalness puzzle.

- The  masses of  W, Z gauge bosons are very 
different from any known scale. For example,  the 
quantum gravity scale:

- The question is more serious than just this 
apparent disparity between scales.

Is this generic or plausible in a quantum theory? 
No.
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Weak scale in the SM

Charged under weak interaction. 
Order parameter of EW phase 
transition. 

Simplest implementation
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Weak scale in the SM

Charged under weak interaction. 
Order parameter of EW phase 
transition. 

Simplest implementation

Higgs boson
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Weak scale in the SM

Charged under weak interaction. 
Order parameter of EW phase 
transition. 

Simplest implementation

Higgs boson
mh ∼ mW/Z !
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Scalar (Higgs) mass in quantum 
theory

γW,Z, higgstop

Figure 1: The most significant quadratically divergent contributions to the
Higgs mass in the Standard Model.

give

top loop − 3
8π2 λ2

t Λ
2 ∼ −(2 TeV)2

SU(2) gauge boson loops 9
64π2 g2Λ2 ∼ (700 GeV)2

Higgs loop 1
16π2 λ2Λ2 ∼ (500 GeV)2.

The total Higgs mass-squared includes the sum of these loop contributions and
a tree-level mass-squared parameter.

To obtain a weak-scale expectation value for the Higgs without worse than
10% fine tuning, the top, gauge, and Higgs loops must be cut off at scales
satisfying

Λtop
<
∼ 2 TeV Λgauge

<
∼ 5 TeV ΛHiggs

<
∼ 10 TeV. (1)

We see that the Standard Model with a cut-off near the maximum attainable
energy at the Tevatron (∼ 1 TeV) is natural, and we should not be surprised
that we have not observed any new physics. However, the Standard Model with
a cut-off of order the LHC energy would be fine tuned, and so we should expect
to see new physics at the LHC.

More specifically, we expect new physics that cuts off the divergent top
loop at or below 2 TeV. In a weakly coupled theory this implies that there are
new particles with masses at or below 2 TeV. These particles must couple to the
Higgs, giving rise to a new loop diagram that cancels the quadratically divergent
contribution from the top loop. For this cancellation to be natural, the new
particles must be related to the top quark by some symmetry, implying that the
new particles have similar quantum numbers to top quarks. Thus naturalness
arguments predict a new multiplet of colored particles with mass below 2 TeV,
particles that would be easily produced at the LHC. In supersymmetry these
new particles are of course the top squarks.

Similarly, the contributions from SU(2) gauge loops must be canceled by
new particles related to the Standard Model SU(2) gauge bosons by symmetry,
and the masses of these particles must be at or below 5 TeV for the cancellation
to be natural. Finally, the Higgs loop requires new particles related to the Higgs
itself at or below 10 TeV. Given the LHC’s 14 TeV center-of-mass energy, these
predictions are very exciting, and encourage us to explore different possibilities
for what the new particles could be.
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Λ:  cut-off,  limit of validity of theory
scale at which new physics enters
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Scalar (Higgs) mass in quantum 
theory

- Renormalization
mh2 (physical) = m02 + c Λ2 

- Counter term m02 can always be adjusted to give 
correct mh2 (physical).

γW,Z, higgstop

Figure 1: The most significant quadratically divergent contributions to the
Higgs mass in the Standard Model.
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itself at or below 10 TeV. Given the LHC’s 14 TeV center-of-mass energy, these
predictions are very exciting, and encourage us to explore different possibilities
for what the new particles could be.

4

Λ:  cut-off,  limit of validity of theory
scale at which new physics enters
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The problem is

- mh2 (physical) = m02 + c Λ2 , c some O(0.01) 
number

- What is Λ? 
Some fundamental scale beyond the Standard 
Mode. 

Λ ≈ MPl ? 

- Λ2 ≈ MPl2 , m02 must be very close to MPl2 . At the 
same time, they must cancel to the precision of 10-32 
to have mh2 (physical) ≈ (100 GeV)2, fine-tuning. 

- Other cut offs? ΛGUT ≈ 1016 GeV, .... 
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Is this plausible?

- mh2 (physical) = m02 + c Λ2 

- In Quantum field theory, we understood this as

mh2 (physical): mass at weak scale ～ 100 GeV.

Counter term m02 : mass for theory at scale Λ
c Λ2 : correction to mass due to physics between 
Λ and weak scale.

- m02 and c Λ2 come from very different physical 
origins. Why should they cancel so precisely?
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The lesson
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The lesson

- Maybe Quantum Field Theory is wrong. 
Maybe. However, the predictions of QFT, in 
particular “those loops”, are the most precisely 
tested scientific predictions ever made.

“those loops” are among the greatest successes of 
the Standard Model of particle physics.
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The lesson

- Maybe Quantum Field Theory is wrong. 
Maybe. However, the predictions of QFT, in 
particular “those loops”, are the most precisely 
tested scientific predictions ever made.

“those loops” are among the greatest successes of 
the Standard Model of particle physics.

- So, we take it seriously.
mh2 (physical) = m02 + c Λ2 

No fine-tuning: mh2 (physical) ~ m02 ~ c Λ2

Λ ≈ 100s GeV - TeV
Naturalness criterion leads to a prediction of the
mass scale of new physics!!
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Does this work?

- Example: low energy QCD resonances: pion .... 

- m𝜋 ∼ 100 MeV. 

- Naturalness requires Λ ≈ GeV.
Indeed, at GeV, QCD ⇒ theory of quark and gluon

Pion is not elementary.

π± π±

γ

γ

δm2
π± ! e2

16π2
Λ2
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Another example: electron mass

- Linearly divergent. 

- Need new physics below Λ~ α-1 me 

!E Z

r=⇤�1

d3r ~E2 ' ↵⇤

Classically:
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New physics: the positron

- Extension of spacetime symmetry: 
Lorentz symmetry + quantum mechanics          
⇒ positron, doubling the spectrum! 

- Log divergence (very mild).

- Proportional to me .  

e−

e+
γ e−

�me '
↵

⇡
me log

✓
⇤

me

◆
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New physics: the positron

- Extension of spacetime symmetry: 
Lorentz symmetry + quantum mechanics          
⇒ positron, doubling the spectrum! 

- Log divergence (very mild).

- Proportional to me .  

e−

e+
γ e−

�me '
↵

⇡
me log

✓
⇤

me

◆

Fermion mass is natural!
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Scale of new physics

- m(positron) = m(electron) (CPT). 

- New physics can come in at a lower scale then 
necessary, for a natural theory. 
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Does not always work 
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Does not always work 

- Cosmological constant: CC ≈ (10-3 eV )4 
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Does not always work 

- Cosmological constant: CC ≈ (10-3 eV )4 

- Computing quantum field theory, most divergent

CC∝ Λ4  

New physics at 10-3 eV, or at about 1 mm!

We have not seen them!
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Does not always work 

- Cosmological constant: CC ≈ (10-3 eV )4 

- Computing quantum field theory, most divergent

CC∝ Λ4  

New physics at 10-3 eV, or at about 1 mm!

We have not seen them!

- Doesn’t mean it is not a problem. Instead, We are 
missing something big! 

Missing dynamics of gravity?

Multiverse? 
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Naturalness of the 
weak scale.

Example 1: Supersymmetry

References:
S. Martin, “A supersymmetry primer”,  hep-ph/9709356
M. Drees, R. Godbole, P. Roy “Sparticles” World Scientific.
And many more...
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Supersymmetry (SUSY)

- Supersymmetry: 

- A different kind of symmetry
boson, spin-0, does not transform under rotation. 

Fermion, spin-1/2, transforms non-trivially under 
rotation.

Therefore, a symmetry which transforms boson to 
fermion must be a space-time symmetry, an 
extension of known spacetime symmetry 
(Poincare). 
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Supermultiplets.

- In writing down interactions invariant under some 
symmetry, it is convenient to group all states 
which transform into each other under the 
symmetry transformation together, called a 
multiplet.

- In supersymmetry, we use supermultiplet. 
Will have fermionic and bosonic components, same 
mass. 

SUSY commute with other global or gauge 
symmetries. 

Within a supermultiplet, states have the same gauge 
(or global) quantum numbers (i.e., representation, 
charge ). 
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Supermultiplets

- Chiral multiplet 
On-shell: free particles. 

complex scalar: 𝜙, two on-shell degrees of 
freedom

Weyl fermion (2-component): 𝜓, two on-shell 
degrees of freedom. 

- Examples of chiral multiplet
Starting from SM model quark (left or right 
handed),  

Adding scalar partner: squark. 

Form a chiral multiplet. 

q̃L,R

qL,R
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Supermultiplets

- Vector multiplet (on-shell). 
Spin-1: vector Aμ (massless, 2 degrees of freedom)

Weyl fermion: λ (2 d.o.f.)

- Example: 
Starting with SM gauge bosons, such as the 8 
gluons Gaμ (a=1, ..., 8)

Adding their partners,     8 gluinos.g̃a
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SUSY and naturalness

- Remember (an important part of) the problem is 
that scalar mass in a generic theory requires 
fine-tuning. 

- We have also seen that fermion mass (such as 
electron mass) is natural. 

- SUSY makes scalar mass natural by relating it to 
fermion mass! 

- SUSY extends the spacetime symmetry, doubles 
the spectrum, and delivers naturalness. 

Similar to the electron story (extending to 
Lorentz symmetry, introducing positron. )
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First consequence of SUSY

- Each known elementary particles must belong to 
a supermultiplet, has a superpartner.

Minimal Supersymmetric Standard Model

• Standard Model + Supersymmetry. 

• Superpartners. 

Minimal Supersymmetric Standard Model (MSSM)
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Supersymmetry: a theorist’s dream
- A new paradigm. First extension of spacetime 

symmetry since Einstein. 

Figure 5.8: RG evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid lines).
In the MSSM case, the sparti-
cle mass thresholds are varied be-
tween 250 GeV and 1 TeV, and
α3(mZ) between 0.113 and 0.123.
Two-loop effects are included.
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MSSM particles in loops. The normalization for g1 here is chosen to agree with the canonical covariant
derivative for grand unification of the gauge group SU(3)C × SU(2)L × U(1)Y into SU(5) or SO(10).
Thus in terms of the conventional electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW ,
one has g2 = g and g1 =

√
5/3g′. The quantities αa = g2

a/4π have the nice property that their
reciprocals run linearly with RG scale at one-loop order:

d

dt
α−1

a = − ba

2π
(a = 1, 2, 3) (5.22)

Figure 5.8 compares the RG evolution of the α−1
a , including two-loop effects, in the Standard Model

(dashed lines) and the MSSM (solid lines). Unlike the Standard Model, the MSSM includes just the
right particle content to ensure that the gauge couplings can unify, at a scale MU ∼ 2 × 1016 GeV.
While the apparent unification of gauge couplings at MU might be just an accident, it may also be
taken as a strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MP. Furthermore, if this hint is taken
seriously, then we can reasonably expect to be able to apply a similar RG analysis to the other MSSM
couplings and soft masses as well. The next section discusses the form of the necessary RG equations.

5.5 Renormalization Group equations for the MSSM

In order to translate a set of predictions at an input scale into physically meaningful quantities that
describe physics near the electroweak scale, it is necessary to evolve the gauge couplings, superpotential
parameters, and soft terms using their renormalization group (RG) equations. This ensures that the
loop expansions for calculations of observables will not suffer from very large logarithms.

As a technical aside, some care is required in choosing regularization and renormalization procedures
in supersymmetry. The most popular regularization method for computations of radiative corrections
within the Standard Model is dimensional regularization (DREG), in which the number of spacetime
dimensions is continued to d = 4 − 2ε. Unfortunately, DREG introduces a spurious violation of su-
persymmetry, because it has a mismatch between the numbers of gauge boson degrees of freedom and
the gaugino degrees of freedom off-shell. This mismatch is only 2ε, but can be multiplied by factors
up to 1/εn in an n-loop calculation. In DREG, supersymmetric relations between dimensionless cou-
pling constants (“supersymmetric Ward identities”) are therefore not explicitly respected by radiative

41

• Gauge coupling unification! 

• An unintended and amazing consequence of SUSY.
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Interactions.

- Superpartners have the same gauge quantum 
numbers as their SM counter parts. 

Similar gauge interactions. 

More details: for example, S. Martin “Supersymmmetry Primer”
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Interactions.

- Superpartners have the same gauge quantum 
numbers as their SM counter parts. 

Similar gauge interactions. (a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Figure 3.3: Supersymmetric gauge interaction vertices.
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between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
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of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Gµ, W, Z, �

More details: for example, S. Martin “Supersymmmetry Primer”
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Interactions.

- Superpartners have the same gauge quantum 
numbers as their SM counter parts. 

Similar gauge interactions. (a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.3: Supersymmetric gauge interaction vertices.
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between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
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The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
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general form of soft supersymmetry breaking terms in section 5.
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eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
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of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
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gauge transformation properties, so it only remains to decide on the superpotential. This we will do
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More details: for example, S. Martin “Supersymmmetry Primer”
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Interactions.

- SUSY⇒ additional couplings 

strength fixed by corresponding gauge couplings.
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Interactions.

- SUSY⇒ additional couplings 

strength fixed by corresponding gauge couplings.

g̃ q

q̃

(a)

W̃ qL, !L, H̃u, H̃d

q̃L, !̃L, Hu, Hd

(b)

B̃ q, !, H̃u, H̃d

q̃, !̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-

29

D-term: ∝ g2

Monday, August 6, 12



Interactions. 

- SM fermions (such as the top quark) receive 
masses by coupling to the Higgs boson.

Yukawa couplings ⇒ SUSY counter parts.
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tL t̃∗R

H̃0
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Figure 6.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.
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Figure 6.2: Some of the (scalar)4 interactions with strength proportional to y2t .

Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-
metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 6.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 6.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (6.1.3). For variety,

we have used tL and t†R in place of their synonyms t and t (see the discussion near the end of section
2). In Figure 6.1b, we have the coupling of the left-handed top squark t̃L to the neutral higgsino field
H̃0

u and right-handed top quark, while in Figure 6.1c the right-handed top anti-squark field (known

either as t̃ or t̃∗R depending on taste) couples to H̃0
u and tL. For each of the three interactions, there is

another with H0
u → H+

u and tL → −bL (with tildes where appropriate), corresponding to the second
part of the first term in eq. (6.1.3). All of these interactions are required by supersymmetry to have
the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
each of Figures 6.1a,b,c can be obtained from any of the others by changing two of the particles into
their superpartners.

There are also scalar quartic interactions with strength proportional to y2t , as can be seen from
Figure 3.1c or the last term in eq. (3.2.18). Three of them are shown in Figure 6.2. Using eq. (3.2.18)
and eq. (6.1.3), one can see that there are five more, which can be obtained by replacing t̃L → b̃L
and/or H0

u → H+
u in each vertex. This illustrates the remarkable economy of supersymmetry; there

are many interactions determined by only a single parameter. In a similar way, the existence of all
the other quark and lepton Yukawa couplings in the superpotential eq. (6.1.1) leads not only to Higgs-
quark-quark and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also
to squark-higgsino-quark and slepton-higgsino-lepton terms, and scalar quartic couplings [(squark)4,
(slepton)4, (squark)2(slepton)2, (squark)2(Higgs)2, and (slepton)2(Higgs)2]. If needed, these can all be
obtained in terms of the Yukawa matrices yu, yd, and ye as outlined above.

However, the dimensionless interactions determined by the superpotential are usually not the most
important ones of direct interest for phenomenology. This is because the Yukawa couplings are already
known to be very small, except for those of the third family (top, bottom, tau). Instead, production
and decay processes for superpartners in the MSSM are typically dominated by the supersymmetric
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Superpartners.

- We have not seen any of the superpartner yet. 
They must be heavier than the SM particles. 

- Therefore, SUSY must be a broken symmetry. 

- Are we back to the beginning? 
No. 

SUSY can be broken in a controlled way so that 
the theory stays natural, soft SUSY breaking. 
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Superpartner mass and naturalness

- mh2 (physical) = m02 + c Λ2 , c some O(0.01) 
number.

- New physics needed at Λ ≈ 100s GeV - TeV
This should be the superpartner mass for a 
natural theory.

- At higher energies, the theory is approximately 
supersymmetric. Therefore, scalar mass would be 
be sensitive to what happens at higher energy 
scales. 

mh2 (physical) = m02 + c m(superpartner)2
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The masses of the superpartners

scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ

† − d̃m2
d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) . (6.3.1)

In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2

Q, m
2
u, m

2
d
, m2

L, m
2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)

m2
Q, m

2
L, m

2
u, m

2
d
, m2

e , m
2
Hu

, m2
Hd

, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2

3.
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The masses of the superpartners
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u ũ
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with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2

Q, m
2
u, m

2
d
, m2

L, m
2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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2
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2
d
, m2

e , m
2
Hu

, m2
Hd

, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ

† − d̃m2
d
d̃
†
− ẽm2

e ẽ
†

−m2
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H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) . (6.3.1)

In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2
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2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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2
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, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
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† − d̃m2
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†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) . (6.3.1)

In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2
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2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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2
d
, m2
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2
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, m2
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, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
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†
− ẽm2

e ẽ
†

−m2
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H∗
uHu −m2

Hd
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dHd − (bHuHd + c.c.) . (6.3.1)

In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2
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2
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L, m
2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.
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In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2
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entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [74, 75], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [75]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [75, 76]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
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In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2
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entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)
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soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [77] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2
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- Gauge invariance and SUSY allows for more 
couplings. For example

Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u

u

d s̃∗R

p+





}
π0

u

u∗

e+

λ′′∗112 λ′112

assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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Figure 6.5: Squarks would mediate disas-
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violated by both ∆B = 1 and ∆L = 1 in-
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.

54

Monday, August 6, 12



More couplings?

- Gauge invariance and SUSY allows for more 
couplings. For example
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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Figure 6.5: Squarks would mediate disas-
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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- Vanishing couplings usually come from a 
symmetry principle. 

- Could impose B (Bquark = 1/3  ) or L (Llepton = 1 ) 
symmetry. Slightly uncomfortable

Not exact symmetries in the SM. 

- An interesting choice: R-parity

in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
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in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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Lightest SuperPartner (LSP) is stable

- Neutral LSP a natural candidate for WIMP dark 
matter. 

O(ΛEW)
Weakly coupled. 

Can have Similar states in other new physics 
scenario. With SUSY, a consequence of forbidding 
proton decay.
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SUSY at colliders

• Superpartners must be pair produced!

Production

SM particles

p...

p...

χDM
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SUSY at colliders

- long decay chain.

- jets, leptons, missing ET ....

- Nice signal, good discovery potential. 

LSP, DM candidate

Lightest superpartner (LSP)
Neutral and stable. 
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