# The Advanced Superconducting Test Accelerator (ASTA) facility at Fermilab: plans and opportunities

Philippe Piot Fermilab & Northern Illinois University, 8 Nov. 2011



#### **ASTA** overview

This cavity is currently at A0



<40 MeV < 750 MeV < 1 GeV





## ASTA phases

FY12: photoinjector commissioning +250 MeV

photoinjector
~250 MeV spectro
+ dump

• FY 13-14: install commission ACC2+3



FY 15: 750 MeV beam to "users"

- beam manipulations?
- more accelerations?



### ASTA promise...



(ASTA performances are extrapolated from simulations of injector -- these are the best possible performances)

- Variable energy from ~40 to ~1 GeV,
- High-repetition rate (1-ms trains):
  - Exploration of dynamical effects in beam-driven acceleration methods.
- L-band SCRF linac:
  - Well suited for beam-driven acceleration,
- Photoinjector source:
  - Provides low-emittance beam,
- Arbitrary emittance partition:
  - repartition of phase spaces to match final applications,
  - Tailored current profiles.



## Photoinjector design

- Uses FLASH-type L-band rf gun (~40 MV/m),
- Nominal laser is 3-ps possibility to have flat-top distribution (stacking with  $\alpha$ -BBO crystals),
- Variable transverse emittance ratio (magnetized beam + round-to-flatbeam RFTB transform)
- 40-MeV off-axis user area







# Photoinjector performances (simulations)

 Beam quality comparable to FLASH (uncompressed beam),

#### Transverse emittance



#### Longitudinal emittance & bunch length



[P. Piot, et al., IPAC10 (2010)]

#### Slice parameters





## Photoinjector configuration for 1st beam

No 3rd harmonic cavity ⇒ nonlinear compression,

Satisfies the ILC requirements: ~1.2 kA peak current (corresponds to a 3.2-nC 300-μm Gaussian bunch in Q = 3.21.0 0.2 0.02 nC

a cryomodule).

| Q   |    | $\epsilon_{nxi}$ | $\epsilon_{nxf}$ | $\epsilon_{nyi}$ | $\epsilon_{nyf}$ | $\sigma_{zi}$ | $\sigma_{zf}$ |
|-----|----|------------------|------------------|------------------|------------------|---------------|---------------|
| (nC | ") | (μ <b>m</b> )    | (μm)             | (μ <b>m</b> )    | (μm)             | (mm)          | (mm)          |
| 3.2 | 2  | 4.62             | 13.40            | 4.61             | 8.099            | 2.60          | 0.53          |
| 1.0 | )  | 2.33             | 3.393            | 2.32             | 2.472            | 1.97          | 0.33          |
| 0.2 | 5  | 0.598            | 1.25             | 0.598            | 1.392            | 1.95          | 0.38          |
| 0.0 | 2  | 0.279            | 0.459            | 0.279            | .366             | 1.27          | 0.15          |
|     |    |                  |                  |                  |                  |               |               |

Transverse emittance before and after BC1 as function of charge (simulations with IMPACT-Z)

Dy z (mm) z (mm) z (mm) z (mm)

Longitudinal phase space upstream (top) and downstream (bottom) of BC1

[C. Prokop, et al., (2011)]



# Accelerator configuration for 1st beam



- Only one accelerating module available for first beam,
- Transport from cryomodule exit to spectrometer line with FODO
- High-energy spectrometer + user beamline(s)
- Off-axis dump to accommodate possible extensions



[C. Prokop, et al., (2011)]



#### Initial research themes:

- Beam dynamics
  - Photoinjector characterization,
  - . Low energy compression.
- Advanced phase space manipulations:
  - Flat beams and their compression,
  - Transverse-to-longitudinal phase space exchange (PEX),
  - Arbitrary repartitioning of emittances (flat beam + PEX)
- High-brightness electron beams
  - · Channeling radiation (with Vanderbilt),
- Integrable-Optics Test Accelerator (Valishev's talk)
  - Small diameter ring downtream of cryomodule to test integrable optics concept.

\* to be done after at least 1 accelerating module



# High-Brightness e- beams: possible production of field-emitted bunches

- During FY12-13, HBESL will support the development of a coaxial-line cathode holder
- Two-frequency gating of field emitters
- If successful this system could be used at ASTA

# 

[collaboration with Vanderbilt and NIU (funded by DARPA)]

#### [J. Lewellen, PRSTAB 2006]





# High-Brightness e- beam: applications to X-ray sources

- Bright electron beams from single-tip FE are planned to be used to produce X-rays via channeling radiation
- Expected brightness for 15 keV ~10<sup>12</sup> photons/s-mm<sup>2</sup>-mrad<sup>2</sup>-0.1% BW
- Need 40 MeV bunches on a diamond crystal with ~1000 e-



Crystal lattice

<del>0000000</del>

0000000



[C. Brau et al, to appear in Sync. Rad. News (2012)]

 FE array cathodes could also be used to increase charge/bunch or open new manipulation opportunities (combination with PEX)



X-ray

Electron

# Next generations phase-space exchange (PEX) experiments

- Two stages:
  - Phase I: improved configuration (over A0 setup) in the 40-MeV beamlline
  - Phase II: installation downstream of cryomodules
- Conditions for phase space exchange:

Dispersion vector downstream beamline

Transfer matrix of downstream beamline

$$\overrightarrow{\eta}_d = \left(egin{array}{cc} R_{11,d} & R_{12,d} \ R_{21,d} & R_{22,d} \end{array}
ight) \overrightarrow{\eta}_u$$

Dispersion vector upstream beamline

$$\overrightarrow{\eta} \equiv (\eta, \eta' \equiv d\eta/ds)$$



⇒ Double-dogleg configuration not unique (or best) solution...

[R. Fliller, FNAL Beamdocs (2007)]



# 2nd-generation PEX experiments at ~40 MeV (1)

#### Limitations of A0PI experiments:

- limited diagnostics downstream PEX beamlines,
- Imperfect exchange (?)
- Limited in charge (15 MeV)
- "Unpractical" double-dogleg configuration

#### Improved setup at ASTA:

- TM<sub>110</sub>+ TM<sub>010</sub> cavity,
- Chicane-like PEX configuration,
- Deflecting cavity downstream of PEX



- Emphasis on current shaping + combine with flat beams
- Experience will be transplanted on the high-energy PEX design



# 2nd-generation PEX experiments at ~40 MeV (2)

#### Goals:

- Arbitrary repartition of beam emittance within the 3 degrees of freedom (combined with round-to-flat beam transformer) [collaboration with Los Alamos MARIE's team]
- Chicane/PEX will have a variable dispersion/R56 ⇒ study trade of between dispersion and cavity strength



## Combining field emitters with PEX beamlines

- Generation of train of attosecond bunches,
- Applications to short wavelength light sources (FEL, ICS,...)



[Graves, Kaertner, Moncton, Piot to be published (2011)]





# PEX at higher energies [downstream cryomodule(s)]

 Requirement on deflecting cavity kick can be alleviated with a higher dispersion

$$\kappa = 1/\eta_x$$

But beam size should satisfy

$$\sigma_x \leq \lambda/(12\pi)$$

 At 3.9 GHz, we will have to go with a SCRF system (advantage to also do full exchange over a bunch train)



# Integrable-Optics Test Accelerator (1)

- ASTA facility provides the needed infrastructure to test other concepts,
- IOTA, a compact ring dedicated to test integrable optic (with ORNL),
- No stringent requirements on ~150-MeV beam quality,
- Can support experiment of optical stochastic cooling. (with MIT)



# Integrable-Optics Test Accelerator (2)



| e- Energy                            | 150 MeV                          |  |  |
|--------------------------------------|----------------------------------|--|--|
| Circumference                        | 32 m                             |  |  |
| Dipole field                         | 0.5 T                            |  |  |
| Betatron tunes                       | Qx=Qy=3.2<br>(2.4 to 3.6)        |  |  |
| Radiation damping time               | 1-2 s<br>(10 <sup>7</sup> turns) |  |  |
| Equilibrium emittance, rms, non-norm | 0.06 μm                          |  |  |

- Nonlinear integrable accelerator optics are being developed to enable stable operation of a completely nonlinear machine (tune spread up to 50%)
- Accelerators with very large tune spread will push the intensity limits of storage rings by suppressing collective instabilities through "better" Landau damping.



[Danilov, Nagaitsev, Valishev, 2011 see also PRSTAB 2010]



# Further developments

High-brightness beams

channeling radiation

femtosecond bunch trains

short-wavelength light sources

Advanced phase space manipulations

current shaping

emittance repartitioning

Beam-driven acceleration

Integrable Test
Optics
Accelerator

Optical stochastic cooling

Compact THz CSR source?

Multi-dimensional Cooling?



**‡** Fermilab

# Other interests (1)

 Dielectric wakefield acceleration with tailored bunch (ramped current, flat beams),



Narrow-band Gamma-ray (Muons Inc.)



- Inverse Laser Compton
   Scattering for K-edge
   densitometry (collaboration with
   K Chouffani IAC / proposal to
   NEUP in preparation)
- positron source [test of "standby" ILC positron source -suggested by W. Gai (ANL)]



# Other interests (2)

- Space-charge driven broadband microbunching for attosecond VUV radiation (discussions with Schneidmiller and Yurkov, DESY),
- Optical stochastic cooling using the IOTA ring (collaboration with MIT)



 Reversible beam heater to improve the performance of shortwavelength FELs (interest from LBNL)



$$y' = \frac{e\omega V_y}{\gamma mc^3} z_0 \equiv \alpha z_0 \,, \quad \delta = \alpha y_0 \,,$$

(Behrens, Huang, Xiang, FEL11)



#### Discussions

- ASTA has several unique features compared to existing facilities in the US,
- Main limitation of the current design (devised to fulfill ILC requirements) stems from the low-energy compressor:
  - Eventually need to have a staged compression scheme,
  - In the shorter term: need a 3.9-GHz accelerating cavity to linearize the longitudinal phase space ⇒ improved beam parameters
- •If properly configured, ASTA could support an extensive R&D program in Accelerator Science and beyond,



# Extra slides



# High-energy user area + spectrometer









# A possible configuration with 4 cryomodules

- BC2 can produce high-peak current ~10 kA
- Currently exploring trade off between peak current and emittance dilution,





Energy limited to 900 MeV (safety envelope)



# Hybrid deflecting cavity for next-generation PEX beamlines

10<sup>3</sup>

TM<sub>110</sub> deflecting-mode cavity followed by a TM<sub>010</sub> cavity,

5-cell deflecting + 1-cell accerating should be OK





10<sup>3</sup>

# Towards next generation light sources

 Combining Fermilab's phase space manipulation expertise with novel acceleration schemes

Compact short-wavelength (soft x-ray?) FEL

