
Dr Christopher Jones, Dr Marc Paterno
LArSoft Usability Workshop
23 June 2016

You Too Can Do Performance Profiling

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Introduction

• Types of Profiling
• Timing

• Used to find in which code the program spends most of its time
• Memory

• Used to find where memory is being hoarded
• hoarded: memory being held for long periods of time

• Used to find where it is leaked
• leaked: memory being ‘new’ed but never ‘delete’d

• Used to find where it is being abused
• abused: code overwriting a value in memory accidentally

• Tools
• igprof

• can do timing and memory (hoarding and leaking) profiling
• valgrind

• can do memory hoarding, leaking and abusing profiling
• Instruments

• macOS only
• can do timing and memory (hoarding and leaking) profiling

2

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Steps to Using igprof for Memory Profiling

• Setup the igprof UPS product in your working area
setup igprof v5_9_16 -q e9

• Run igprof on your lar job
igprof -t lar -o igprof_lar.gz lar -c simple.fcl

• Process the data gathered by igprof into an sqlite database
igprof-analyse --sqlite --demangle -v igprof_lar_optimized.gz |
sqlite3 igprof_lar_optimized.sql3

• Start a web server to easily look at the igprof report
igprof-navigator -p 8090 igprof_lar_optimized.sql3 &

• Point your web browser to the URL printed out when starting the web server
firefox http://test.fnal.gov:8090

• Browse the report

3

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Setup the UPS Product

• Setting up igprof makes the command-line igprof executable (and ancillary
tools) available.

• igprof is implemented in C++ , so we need to set up the binary compatible
version (here, ‘e9’, the same as the LArSoft build you’re using).

• Standard options to use
setup igprof v5_9_16 -q e9
igprof: setup the UPS product igprof
v5_9_16: is the most recent version of igprof.
-q e9: chooses the e9 qualified build (GCC 4.9.3, using C++14)

• To list the build of igprof installed and available for setup:
ups list -aK+ igprof

• See http://scisoft.fnal.gov/scisoft/packages/igprof/ for all installable versions

4

http://scisoft.fnal.gov/scisoft/packages/igprof/

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Running igprof

• igprof will run lar for you and monitor the program as it runs

• Documentation
• Slightly out-dated ones available at main website: http://igprof.org
• igprof -h gives information on the command line

• Standard options to use
igprof -t lar -o igprof_lar.gz lar -c simple.fcl

-t lar : only profile programs named ‘lar’
-o igprof_lar.gz : write compressed output to file igprof_lar.gz
lar -c simple.fcl : run lar normally

5

http://igprof.org

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Process igprof Results

• The output of igprof is in a form quick to write but not human understandable

• igprof-analyse is used to transform the igprof output to a human usable form
• a text output is available but takes more effort to understand
• we will use an sqlite output which can be easily read via a web browser

• Standard options to use
igprof-analyse --sqlite --demangle -v igprof_lar.gz | sqlite3
igprof_lar.sql3
--sqlite : generate database commands for sqlite
--demangle : use human-readable names for C++ functions and classes
-v : give feedback as the analysis is running
igprof_lar.gz : name of the igprof output file to read
| sqlite igprof_lar.sql3 : send the output to sqlite which writes a file named
igprof_lar.sql3

6

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Start Webserver

• igprof-navigator reads the sqlite file and creates easy to browse web-pages

• Standard options to use
igprof-navigator -p 8090 igprof_lar.sql3 &

-p 8090 : specify the network port to use for the web-server
• any number between 8000-9000 tends to be fine
• the program gives an error if the port is already in use

igprof_lar.sql3 : name of the sqlite file to use

• igprof-navigator prints out the URL to use by your browser

7

[cdj@test build]$ igprof-navigator -p 8090 igprof_lar.sql3 &
igprof-navigator standalone HTTP server started on port 8090

Point your browser to: http://test.fnal.gov:8090

http://test.fnal.gov:8090

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Viewing Webpages

• Web servers started in FNAL network can not be seen outside of the network
• Often the servers can not be seen outside of the same machine

• Best to run the web browser on same machine as the web server
• remember to specify the correct port in the URL
firefox http://test.fnal.gov:8090

8

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Browsing the Web Results

• The URL shows a list of all functions recorded
• list is ordered by the amount of time the executable spent in the function
• Cumulative is measured in seconds spend in that function

9

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Where to Start

• Many of the top lines are just part of the infrastructure for art
• Want to start at the point where art is calling modules
• Click on the link that begins with bool art::Worker::doWork

10

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

11

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• This row shows the information about the scrutinized function itself

12

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• The row(s) above shows which functions are calling the scrutinized function
• The top rows are ordered by time

13

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• The rows below show which functions are called by the scrutinized function
• The bottom rows are ordered by time

14

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• Column Rank is where in the time ordered list of functions this appears
• art::Worker::doWork is the 18th most time consuming function in the report

15

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• Column %total is fractional time spent by job in that routine
• 96.36% of the job time was in art::Worker::doWork

16

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• Column Counts says how many seconds spent in the functions
• to/from for callers is how much time is that function waiting on the scrutinized function
• to/from for scrutinized function is seconds in that call but not in calling other functions

• 0.00 seconds is how long art::Worker::doWork is running but not calling other functions
• to/from for calling functions is time the scrutinized function is waiting for them

17

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Reading the Report

• This brings up the page for the function art::Worker::doWork

• Column Paths is not useful for this discussion

18

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Finding Time Consuming Modules

• art::Worker::doWork is how art calls all modules
• If there were EDAnalyzers, EDFilters or OutputModules in the job they would be shown

• Click on the top most called function art::EDProducer::doEvent

19

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Finding Time Consuming Modules (2)

• art::EDProducer::doEvent calls the produce method of all modules
• All EDProducers called are shown as being called from the function

• arttest::IntProducer is the module we want to analyze
• Click on its link

20

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

IntProducer Report

• The longest call is to MyDemo_::doIntegration
• that is where the work of the module gets done

• Nearly half the time is in dealing with MyDemo_::DoubleHolder!
• calls to std::vector<MyDemo_::DoubleHolder>
• constructing and copying MyDemo_::DoubleHolders

21

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

IntProducer Report (2)

• Most of the time in sin
• A smaller fraction is constructing and destructing MyDemo_::DoubleHolder

22

06/23/2016 Chris Jones | You Too Can Do Performance Profiling23

Code of IntProducer

void IntProducer::produce(art::Event& e)
{
 //calculate steps we should take during the integration
 using namespace MyDemo_;
 const auto pi = std::acos(-1);
 const auto pi_over_2 = pi/2.;

 std::vector<DoubleHolder> steps;
 for(int i = 0; i< iterations_; ++i) {
 DoubleHolder newStep{(pi_over_2*i)/iterations_};
 steps.push_back(newStep);
 }

 auto value = doIntegration(steps);
 DoubleHolder valueHolder{value};
 steps.push_back(valueHolder);
 e.put(std::make_unique<IntProduct>(value));
}

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Time Spent In std::vector

24

std::vector<DoubleHolder> steps;
for(int i = 0; i< iterations_; ++i) {
 DoubleHolder newStep{(pi_over_2*i)/iterations_};
 steps.push_back(newStep);
}
auto value = doIntegration(steps);

double doIntegration(std::vector<DoubleHolder> steps);

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Time Spent In std::vector

• push_back into vector accounts for these
• copy constructor also called when vector has to grow its memory

• fix: use reserve since know exactly how many items to insert

25

std::vector<DoubleHolder> steps;
for(int i = 0; i< iterations_; ++i) {
 DoubleHolder newStep{(pi_over_2*i)/iterations_};
 steps.push_back(newStep);
}
auto value = doIntegration(steps);

double doIntegration(std::vector<DoubleHolder> steps);

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Time Spent In std::vector

• Passing arguments by value account for many copy constructor calls
• Fix: change function to use const reference

26

std::vector<DoubleHolder> steps;
for(int i = 0; i< iterations_; ++i) {
 DoubleHolder newStep{(pi_over_2*i)/iterations_};
 steps.push_back(newStep);
}
auto value = doIntegration(steps);

double doIntegration(std::vector<DoubleHolder> steps);

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Results After Optimizing for std::vector
• Original Result

• New Result

• Speed Improvement: 41%
• original time: 6.66s
• new time: 4.72

• Next Step: Inline constructor/destructor for MyDemo_::DoubleHolder

27

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Results After Inlining
• Original Result

• Final Result

• Speed Improvement: 200%
• original time: 6.66 s
• final time: 3.27

• Take-home: the more the compiler can see, the more it can optimize

28

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Change the Algorithm

• doIntegral is doing a numeric integration of sin
• This is could be done analytically instead

• Take-home: often the best performance increase are from a new algorithm

29

 double doIntegration(std::vector<DoubleHolder> const& steps) {
 double integral = 0.;
 double last_step = steps.front().value;
 for(auto step: steps) {
 integral += std::sin(step.value) * (step.value - last_step);
 last_step = step.value;
 }
 return integral;
 }

06/23/2016 Chris Jones | You Too Can Do Performance Profiling

Conclusion

• igprof has been found to be a useful tool for LArSoft performance analysis
• Translating results from performance to which line of code is tricky

• The code might have been inlined so is not seen or timing goes to an indirect call
• Compiler may implicitly add additional calls

• E.g. passing function arguments by value will invoke constructors
• Performance reviews are an iterative process

• measure, change code, repeat
• Often the greatest timing performance comes from a change of algorithm/data structures

30

