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Motivation 
  The main feature of all present accelerators – linear 

focusing lattice: particles have nearly identical betatron 
frequencies (tunes) by design. 
  Hamiltonian has explicit time dependence 

  All nonlinearities (both magnet imperfections and specially 
introduced) are perturbations and make single particle 
motion unstable due to resonant conditions 
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Typical phase space  portrait 
(single octupole lens): 

1. Regular orbits at small amplitudes 
2. Resonant islands + chaos at larger 
amplitudes 
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Motivation 
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Report	
  at	
  HEAC	
  1971	
  

CBX	
  layout	
  (1962)	
  

  1965,	
  Priceton-­‐Stanford	
  CBX:	
  	
  First	
  mention	
  of	
  an	
  8-­‐pole	
  magnet	
  
  Observed	
  vertical	
  resistive	
  wall	
  instability	
  
  With	
  octupoles,	
  increased	
  beam	
  current	
  from	
  ~5	
  to	
  500	
  mA	
  

  CERN	
  PS:	
  In	
  1959	
  had	
  10	
  octupoles;	
  not	
  used	
  until	
  1968	
  
  At	
  1012	
  protons/pulse	
  observed	
  (1st	
  time)	
  head-­‐tail	
  instability.	
  	
  	
  
	
  Octupoles	
  helped.	
  

  Once	
  understood,	
  chromaticity	
  jump	
  at	
  transition	
  	
  
	
  was	
  developed	
  using	
  sextupoles.	
  

  More	
  instabilities	
  were	
  discovered;	
  helped	
  by	
  octupoles,	
  W	
  



Do Accelerators Need to be 
Linear? 

  Search for a lattice design that is strongly nonlinear yet 
stable 
  Orlov (1963) 

  McMillan (1967) 

  Perevedentsev, Danilov (1990) 

  Chow, Cary (1994) 

  Nonlinear Integrable Optics: Danilov and Nagaitsev 
proposed a solution for nonlinear lattice with 2 invariants 
of motion that can be implemented with special 
magnets 
  Phys. Rev. ST Accel. Beams 13, 084002 (2010) 
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Approach 

  Start with a round axially-symmetric linear lattice (FOFO) 
with the element of periodicity 
  Phase advance 

      0<ν0<π in the drift L 

  n×π in T insert 

  Add special nonlinear potential V(x,y,s) in the drift such 
that 
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Special Potential 

  Start with a Hamiltonian 

  Choose the nonlinear potential such that it is time-
independent in normalized variables 

  Find potentials that result in the Hamiltonian having a 
second integral of motion. In elliptic variables ξ, η  
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Maximum Tune Shift 

  Multipole expansion of U for 

     d=0, q=t π/2 is  

  For small-amplitude motion to be 

     stable*, t<0.5 

  Theoretical maximum nonlinear tune shift per cell is  
  0.5 for mode 1, or 50% 
  0.25 for mode 2, or 25% 
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Numerical Simulations 

  Tools used 
  Modified version of MADX 

  Lifetrac (originally developed for beam-beam simulations)  

  Methods 
  Evaluation of long-term particle motion stability 

  Resonance structure using Frequency Map Analysis 

  Topics 
  Approximation of constantly varying V(s) with discrete thin 

elements 

  Effect of perturbations of T-insert lattice (non-equal β-
functions, phase advance ≠ π)  

  Effect of synchrotron oscillations 

  Sextupoles in the lattice 
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Frequency Map Analysis 

  Based on precise tune determination from FFT of turn-by-
turn particle coordinate (2D tracking) 

  Evaluate tune jitter in sliding time window  resonances 

10	
  

Example of FMA application for beam-beam effects 
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FMA of Integrable Optics 

  ν0=0.3, t=0.4, 40 thin elements per drift, 4 elements of 
periodicity 
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Integrable Optics vs. 
Conventional Multipoles 

  Nonlinear potential approximated by multipole 
expansion up to 9th order 
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Effect of Number of Elements 

  s-dependence of nonlinear potential approximated by N 
thin lenses 
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N = 20 

N = 10 
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Long-Term Tracking 

  Track a bunch of macro-particles in integrable lattice 
with aperture limitations + chromaticity sextupoles 
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IOTA Motivation 

  An experimental test of the idea would benefit the 
worldwide accelerator physics community as well as the 
field of nonlinear dynamics in general 

  Fermilab has a unique opportunity to take lead in this 
research as ASTA provides means to perform the experiment 
quickly and at low cost 

  It was recognized by the previous AAC that “proposed 
experiments to test the Danilov proposal on integrable 
optics ring design and optical stochastic cooling concepts 
are high-risk, but potentially high reward” 
  Recommendation: 5. Proceed with the plans to create an 

advisory committee-reviewed, proposal-driven user beam 
facility at NML 

  Recommendation: 11. The ideas of the ring in NML need to be 
further developed and presented to the Committee in the near 
future 
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IOTA Goals 

  We are constructing the Integrable Optics Test 
Accelerator ring, which would use the beam from e- SRF 
linac with the goal to demonstrate the possibility to 
implement nonlinear integrable optics in a realistic 
accelerator design 
  Only concentrate on the academic aspect of single-particle 

motion stability, leaving the studies of collective effects and 
attainment of high beam current to future research 

  Achieve large nonlinear tune shift/spread without 
degradation of dynamic aperture by “painting” the 
accelerator aperture with a “pencil” beam 

  Suppress strong lattice resonances = cross the integer 
resonance by part of the beam without intensity loss 

  Investigate stability of nonlinear system to perturbations 

  The measure of success will be achievement of high 
nonlinear tune shift = 0.25 
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IOTA Goals 2 

  After the proof-of-principle demonstration, further work 
will be directed towards 
  Achievement of large tune spread within a circulating beam 
  Achievement of space charge suppression in a nonlinear 

accelerator lattice 

  We collaborate with ORNL, BINP, John Adams Institute 
(Oxford), TechX (SBIR phase 1)  both on the current 
design and further development 

  In addition to the primary goal, the ring can 
accommodate other Advanced Accelerator R&D 
experiments and/or users 
  Only portion of circumference is occupied with nonlinear 

magnets 
  Current design accommodates Optical Stochastic Cooling 
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IOTA Design. Lattice 
  4 elements of periodicity (cells) 

  2m drifts for practical nonlinear magnets 

  T-insert tunable to allow a wide range of phase advances 
and beta-functions in the drift space in order to study 
different betatron tune working points 

  One 5m-long straight section for the Optical Stochastic 
Cooling experiment. 
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IOTA Design. Parameters 
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Parameter Value 

Beam energy 150 MeV 

Circumference 30.4 m 

Dipole field 0.5 T 

RF voltage 50 kV 

Maximum β-function 22 m 

Momentum compaction 0.14 

Betatron tune Qx=Qy=3.2 (2.4 to 3.6) 

Equilibrium transverse emittance 
r.m.s. non-normalized 

0.06 µm 

SR damping time 1s (107 turns) 



IOTA Nonlinear Magnet  
FNAL Design 

  Practical design – approximate continuously-varying 
potential with constant cross-section short magnets 

  Horizontal aperture 1 cm 
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Helical Coil Nonlinear Magnet 
(JAI) 

  3D design making use of modified helical coil method with 
two layers of conductor intersecting at an angle 
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Comparison of the desired and achieved 
vertical magnetic field on the centre plane 

Magnet cross section 
(a)  isometric perspective 
(b)  frontal view 

H.Witte, A.Seryi (JAI) 



IOTA Design. Beam Instrumentation 

  Precise linear lattice tuning is critical for success 
  β-functions must be controlled better than 5% 

  Phase advance in T-inser better than 0.02 

  BPM system with 16 button-type pickups (M.Wendt), same 
as in ASTA beam lines 
  Capture turn-by-turn positions for 8-16k turns 

  <50 µm precision 

  SR windows in dipoles for beam size monitoring 
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IOTA Design. Vacuum 

  For integrable optics experiments only circulate beam for 
100k turns 

  Other applications may require beam lifetime ~1/2 hour 
  Vacuum system must provide 10-7 torr CO and H2 

  10-8 torr Ar 

  Aluminum beam pipe, 50mm dia. In quadrupoles, 15×75 
mm ellipse in nonlinear magnets 
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IOTA Design. RF 

  Adapt Project X Copper cavity design  
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Parameter Value 

Aperture diameter 50 mm 

Frequency 162.45 MHz 

Q factor 30877 

Shunt impedance 4.5×106 Ohm 

Maximum voltage 50 kV 

Power 0.56 kW 



Status and Plans 

  IOTA design requirements have been finalized 

  Selected ring layout 

  Dynamics simulations in the final lattice are in progress 

  Procured components of beam instrumentation and 
vacuum systems 

  Magnetic system specification early 2012 

  Project review in 2012 

  Component manufacture 2012 

  Ring assembly 2013 
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