
Session 14:  
Inventing a New Data Product"
Rob Kutschke!
art and LArSoft Course!
August 5, 2015!
!

In this Session You will Learn"

•  The mechanics of turning a class into a data product!
–  Once this has been done you use it like any other data product.!

•  There is extensive documentation on the art wiki!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"2!

What Should be in A Data Product"

•  Classes and structs that are mostly “just data”!
–  C++ primitive types plus std::string!
–  Plus aggregates of these: for example a std::vector of them !

•  No pointers or references!
–  Later you will learn about art::Ptr and art::Assns.!

•  No c++11 constructs!
•  Member functions should know about other classes!

–  Limited exceptions!
–  The general solution is the facade pattern!

•  std::map will work but it’s very inefficient.!
–  For some purposes there is a candidate replacement:!

•  cet::map_vector<T>, behaves as a sparsely populated vector.!
–  If you think you want a std::map, ask the art team.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"3!

Some Jargon"

•  Persistent Representation!
–  The way that the bits in your data are arranged when it lives in a

file, on disk or tape.!
•  Transient Representation!

–  The way that the bits in your data are arranged when it lives in
memory.!

•  Persistency or Persistency Mechanism!
–  The software that moves your data between memory and disk!
–  art uses ROOT to play this role!
–  You have already seen two modules that do this!

•  RootInput and RootOutput!
•  This are plugins, much your like modules!
•  You may write your own plugins to do persistency.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"4!

ROOT Dictionaries"

•  How do you turn a class into a data product?!
–  Create two files classes_def.xml and classes.h!
–  Edit the CMakeLists.txt file to tell it to make ROOT dictionaries !
–  When you run buildtool, it will find the instructions in the

CMakeLists.txt file and it will send classes_def.xml and
classes.h to a tool called genreflex, which comes with ROOT!

–  genreflex is the tool that makes the ROOT dictionary!
•  It makes two files with suffixes, _dict.so and _map.so.!

•  When you want to get or put a data product, art and ROOT
use the dictionaries to transform between transient and
persistent representations.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"5!

This Example uses Files in Two Directories"

•  The directory art-workbook/SimpleDataProducts!
–  This holds the data product you will use, EventSummary, plus

the start of a second data product that you will finish,
TrackSummary.!

–  It also has the classes_def.xml and classes.h files.!
–  And a CMakeFiles.txt !

•  The directory art-workbook/UsingSimpleDataProducts!
–  Summary_module.cc!

•  Creates the EventSummary data product!
–  ReadSummary_module.cc!

•  Reads the EventSummary data product!
–  Some .fcl files to run the examples!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"6!

SimpleDataProducts/EventSummary.h"

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"7!

namespace tex{ !
 class EventSummary {!
 public:!
 EventSummary();!
#ifndef __GCCXML__!
 int nTracks()const { return nPositive_ + nNegative_; }!
 int nPositive() const { return nPositive_; }!
 int nNegative() const { return nNegative_; }!
 void increment(int q);!
#endif // __GCCXML__!
 private:!
 int nPositive_;!
 int nNegative_;!
 };!
#ifndef __GCCXML__!
 std::ostream& operator<<(std::ostream& ost,!
 const tex::EventSummary& sum);!
#endif // __GCCXML__!
}!

SimpleDataProducts/EventSummary.h"

•  This class holds the number of positively and negatively
charged reconstructed tracks that are found in one event.!
–  Not very interesting but rich enough for a first example!

•  For the persistency mechanism to work properly, genreflex
only needs to see:!
–  The data members; the default constructor!

•  All other data members may be hidden from genreflex!
–  This will speed up dictionary generation; may be important for

large experiments!
•  This is what the #ifndef … #endif construction does.!

–  The price is that if you use these dictionaries to use with
interactive root, you will be missing a lot of functionality!
•  If you need this, just remove the #ifndef and #endif macros.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"8!

SimpleDataProducts/classes_def.xml"

•  If EventSummary has data members that are classes or
structs, you must add lines to declare them!
–  Not needed if that class is declared in another dictionary!
–  For example, primitive types, CLHEP::Hep3Vector, and

CLHEP::HepLorentzVector are declared in dictionaries
generated by art!

•  Only need the art::Wrapper for the data product, not for its
constituents.!

•  Talk about version control later.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"9!

<lcgdict>!
 <class name="tex::EventSummary" classVersion="10"/>!
 <class name="art::Wrapper<tex::EventSummary>"/>!
</lcgdict>!

SimpleDataProducts/classes.h"

•  Every data product present in classses_def.xml must be #include’d
(either directly or indirectly).!

•  You need an entry in the struct for every type that is a templated type!
•  This includes all of the art::Wrapper<T> types!
•  The data member names have no meaning but must be unique within the

struct.!
•  The name of the struct has no meaning but must be unique with the file;!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"10!

#include "art-workbook/SimpleDataProducts/EventSummary.h”!
#include "art/Persistency/Common/Wrapper.h”!
 !
namespace {!
 struct dictionary {!
 art::Wrapper<tex::EventSummary> sum;!
 };!
}!

Late Breaking News"

•  This pattern is now deprecated.!
•  We did not catch it on time to make the change for this

course.!
–  Update your repository in a few days and it will be fixed!

•  The new technique is more robust (there are some weird
cases in which the other pattern fails that work correctly here;
don’t ask …).!

!
! 8/5/2015!Kutschke/Session 14: Inventing a New Data Product"11!

#include "art-workbook/SimpleDataProducts/EventSummary.h”!
#include "art/Persistency/Common/Wrapper.h"!
!
template class art::Wrapper<tex::EventSummary>;!

•  If you look in the classes.h in your repository it actually looks
like:!

SimpleDataProducts/CMakeLists.txt"

•  See next page!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"12!

art_make(!
 LIB_LIBRARIES!
 ${ART_PERSISTENCY_PROVENANCE}!
 ${ART_PERSISTENCY_COMMON}!
 ${ART_UTILITES}!
 ${CETLIB}!
 ${CLHEP}!
 DICT_LIBRARIES!
 art-workbook_SimpleDataProducts!
 ${ART_PERSISTENCY_CORE}!
 ${ART_PERSISTENCY_PROVENANCE}!
 ${ART_PERSISTENCY_COMMON}!
 ${ART_UTILITES}!
 ${CETLIB}!
)!

SimpleDataProducts/CMakeLists.txt"

•  This tells the build system to!
–  Compile all of the .cc files!
–  Link them into a shared library!

•  lib/libart-workbook_SimpleDataProducts.so !
•  (relative to your build directory)!

–  The cmake variable LIB_LIBRARIES describes the link list
needed when the shared library is link.!

–  Run genreflex !
–  The cmake variable DICT_LIBRARIES describes the link list

needed when the dictionary and map shared libraries are
linked.!
•  The library made in the second step is part of this link list.!
•  The “lib/lib” part of the .so name is not needed in the link list !

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"13!

What Happens if you Change the Data Members"

•  This called schema evolution!
•  Often ROOT is smart enough to do the right thing automatically.!
•  But sometimes it is not. In that case you need to write some

code to help ROOT out.!
–  This is much, much easier if you have carefully maintained

version numbers of each class in your classes_def.xml file.!
–  It is very, very hard to retro-fit. !
–  Although classVersion tags are optional, it’s best to use them.!

•  cetbuildtools and mrb have resources to help with the
automatic maintenance of classVersion numbers.!
–  I don’t know how to use them so they are not illustrated here!
–  Your first stop is the art wiki; if not, try Chris Green!

•  You can also maintain them by hand.! 8/5/2015!Kutschke/Session 14: Inventing a New Data Product"14!

Questions so Far?"

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"15!

Get Started"

•  Go to your source directory!
•  Follow the instructions in!

–  UsingSimpleDataProducts/README!
!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"16!

Backup Slides: "

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"17!

SimpleDataProducts/EventSummary.cc"

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"18!

tex::EventSummary::EventSummary():!
 nPositive_(0),!
 nNegative_(0){!
}!
!
void tex::EventSummary::increment(int q){!
 if (q > 0){!
 ++nPositive_;!
 } else{!
 ++nNegative_;!
 }!
}!

SimpleDataProducts/EventSummary.cc"

•  This is the piece that allows you to do:!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"19!

std::ostream& tex::operator<<(std::ostream& ost,!
 const tex::EventSummary& summary){!
 ost << "(Event Summary: Tracks: Postive: "!
 << summary.nPositive()!
 << " Negative: "!
 << summary.nNegative()!
 << ")";!
!
 return ost;!
}!

EventSummary summary; !
// Fill it up!
std::cout << summary << std::endl;!

