
Session 15:  
Controlling Output"
Rob Kutschke!
art and LArSoft Course!
August 5, 2015!
!

In this Session You will Learn"

•  Three properties of a filter module!
•  The concept of an art path!

–  How to stop processing of the remaining module labels in a path!
•  How to tell an output module:!

–  which events it should write!
–  which data products it should write!

•  How to tell an analyzer module:!
–  which events it should process.!

•  Demonstrate that when a module label appears in more than
one path, it is executed only once.!

•  How to drop data products on input.!
•  A dangerous misunderstanding of the path rules.!
!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"2!

Property 1: Inherit from art::EDFilter!

•  Analyzer modules inherit from art::EDAnalyze!
•  Producer modules inherit from art::EDProduce!
•  The called-every-event member function is called filter, not analyze

or produce.!
8/5/2015!Kutschke/Session 13: A Simple Producer"3!

#include	
 "art/Framework/Core/EDFilter.h”	

	

namespace	
 tex	
 {	

	
 	
 class	
 Prod	
 :	
 public	
 art::EDFilter	
 {	

	
 	
 public:	

	
 	
 	
 	
 explicit	
 Prod(Bicl::ParameterSet	
 const&	
 pset);	

	
 	
 	
 	
 bool	
 filter(
 art::Event&	
 event)	
 override;	

	
 	
 };	

}	

Property 2: non-const Arguments!

•  Analyzer modules have only const access to the event.!
•  Filter and Producer modules have full access to the event!

–  They may add new data products!
–  They may NOT modify existing data products!

•  Similarly for arguments of beginRun/endRun etc!

8/5/2015!Kutschke/Session 13: A Simple Producer"4!

bool	
 filter(
 art::Event&	
 event)	
 override;	

	

void	
 analyze(
 art::Event	
 const&	
 event)	
 override;	

	

Property 3: Filters return bool!

•  EDFilter!
–  filter member function returns bool!

•  Analyzer and Producer modules!
–  produce and analyze member functions return void!

•  Similarly for of beginRun/endRun!

8/5/2015!Kutschke/Session 13: A Simple Producer"5!

bool	
 filter(
 art::Event&	
 event)	
 override;	

	

void	
 analyze(
 art::Event	
 const&	
 event)	
 override;	

	

Filters May Produce Their own Data Products"

•  We advise that filters only produce data products that
document the filter decision.!

•  Suppose you have a task that involves!
–  producing some data products!
–  making a filter decision based on those data products!

•  In that case we strongly recommend that you write two
modules:!
–  one to produce the data products!
–  a second to make the filter decision!
–  Why? Separation of concerns.!

•  Your experiment may have standards and practices that
address this question. Ask them.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"6!

This Exercise has Two Filter Modules "

•  The code is in the directory art-workbook/FirstFilter!
•  OddEventNumber_module.cc!

–  Returns true if the event number is odd!
–  Makes some printout for diagnostic purposes!

•  MinGens_module.cc!
–  Takes a parameter set argument to specify a minimum number

of GenParticles !
–  Returns true if the number of GenParticles in the event is >=

this minimum.!
•  When you get a chance look, at them and understand them.!
•  The exercise also uses the FirstHist1 analyzer module that

you saw in a previous exericse – it histograms the number of
GenParticles in the event.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"7!

This Exercise has a Fake Producer Module"

•  PseudoProducer_module.cc!
–  It is an EDProducer!
–  So it can fit in any slot that a producer may.!
–  It never produces anything; that’s OK!
–  It produces diagnostic printout!

•  This is it’s only reason to exist!!
•  When you get a chance look, at it and understand it.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"8!

Recap two Critical Design Rules"

•  Modules may only communicate with each other via the art::Event!
•  Analyzer and output modules may NOT modify the art::Event.!
•  Therefore:!

–  If modules obey these rules, it is safe for art to execute analyzer
and output modules in any order!!

–  If we had the tools to do it, it could even execute them all in
parallel! Maybe this will happen some day?!

!
!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"9!

Structure of the physics Parameter Set "

•  5 identifiers in red are reserved to art !
•  art interprets all other identifiers to be path names!

–  A path name must be sequence of module labels!
•  trigger_paths and end_paths sequences of path names!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"10!

physics :{!
 analyzers :{ }!
 filters :{ }!
 producers :{ }!
!
 // 0 or more path definitions!
!
 trigger_paths : []!
 end_paths : []!
}!

Ordering rules"

•  A path used inside trigger_paths, is called a trigger path.!
–  It may only contain module labels of filter and producer modules!
–  The modules specified in a path will be executed in order!
–  No promise about which path is executed first!

•  A path used inside end_paths, is called an end path!
–  It may only contain module labels of analyzer and output

modules!
–  Modules may executed in any order!

•  If a module label appears in multiple paths, it is only executed
once.!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"11!

We will Work Through these .fcl Files"

•  split1.fcl !
•  split2.fcl!
•  minGens.fcl!
•  andOr.fcl!
•  dropOnOutput.fcl!
•  dropOnInput1.fcl!
•  dropOnInput2.fcl!
!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"12!

split1.fcl "

•  Writes odd numbered events output/oddEvents1.art!
•  Writes even numbered events to output/evenEvents1.art!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"13!

split1.fcl "

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"14!

physics :{!
 filters:{ odd : { module_type : OddEventNumber }}!
!
 oddPath : [odd]!
 evenPath : ["!odd"]!
 e1 : [oddOutput, evenOutput]!
!
 trigger_paths : [evenPath, oddPath]!
 end_paths : [e1]!
}!
outputs : {!
 oddOutput : {!
 module_type : RootOutput!
 fileName : "output/oddEvents1.art"!
 SelectEvents : { SelectEvents: [oddPath] }!
 }!
 evenOutput : {!
 module_type : RootOutput!
 fileName : "output/evenEvents1.art"!
 SelectEvents : { SelectEvents: [evenPath] }!
 }!
}!

split1.fcl"

•  There are two trigger paths oddPath and evenPath!
–  One passes only odd numbered events!
–  One passes only even numbered events!
–  The module is only run once – the result is retained by art and

used on the second path.!
•  An event is written to an output file if the path in the

SelectEvents parameter passes all filters in that path!
•  Remember:!

–  Paths are sequences of module labels!
–  Trigger_paths and end_paths are sequences of paths!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"15!

Run split1.fcl"

•  Run split1.fcl!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"16!

art -c fcl/FirstFilter/split1.fcl !

•  In the output see that the printout from the filter module only
appears once!

•  Inspect to two output files to see that the expected events are
there:!

art -c fcl/FirstModule/first.fcl
-s output/oddEvents1.art !

art -c fcl/FirstModule/first.fcl
-s output/evenEvents1.art !

split2.fcl "

•  Module b is executed for odd events only and c for even
events only!!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"17!

physics :{!
 filters:{ odd : { module_type : OddEventNumber }}!
!
 producers : {!
 a : { module_type : PseudoProducer }!
 b : { module_type : PseudoProducer }!
 c : { module_type : PseudoProducer }!
 }!
!
!
 oddPath : [a, odd, b]!
 evenPath : [a, "!odd”, c]!
 e1 : [oddOutput, evenOutput]!
!
 trigger_paths : [evenPath, oddPath]!
 end_paths : [e1]!
}!

Run split2.fcl"

•  Run split1.fcl!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"18!

art -c fcl/FirstFilter/split2.fcl !

•  Observe the printout and verify that module a is run only once
per event.!

•  Verify that modules b, and c are run when expected!
•  Inspect to two output files to see that the expected events are

there:!

art -c fcl/FirstModule/first.fcl
-s output/oddEvents1.art !

art -c fcl/FirstModule/first.fcl
-s output/evenEvents1.art !

Run minGens.fcl"

•  This exercise shows that the SelectEvents mechanism can
also be used to choose which events are seen by an
Analyzer module:!

•  Run minGens.fcl!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"19!

art -c fcl/FirstFilter/minGens.fcl !

•  This creates a root file output/minGens.root!
•  Inspect the histograms in this file to see that they behaved as

predicted.!

andOr.fcl "

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"20!

physics : // Define filters odd and minGens as before!
 oddOnly : [odd]!
 minGensOnly : [minGens]!
 AND : [minGens, odd] // Logical AND!
 trigger_paths : [oddOnly, minGensOnly, AND]!
!
 e1 : [outAND, outOR]!
 end_paths : [e1]!
}!
outputs : {!
 outAND : { module_type : RootOutput!
 fileName : "output/and.art"!
 SelectEvents : { SelectEvents: [AND] }!
 }!
 outOR : { module_type : RootOutput!
 fileName : "output/or.art"!
 SelectEvents: { SelectEvents: !
 [oddOnly, minGensOnly] } // Logical OR!
 }!
} !

Run andOr.fcl"

•  This exercise shows how to compose the logical AND and
logical OR of two filters:!

•  Run andOr.fcl!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"21!

art -c fcl/FirstFilter/andOR.fcl !

•  Inspect the event numbers in each of the two output files to
verify that they are as expected.!

Remaining Files"

•  dropOnOutput.fcl!
–  Shows shows how to use the outputCommands mechanism to

choose which data products are written to which file!
–  Run this fcl file.!
–  Use file dumper to inspect the dat products in the output file!

•  dropOnInput1.fcl, dropOnInput2.fcl!
–  Shows how to use inputCommands to drop data products on

input!
–  If you drop a data product, art will drop all data products that are

derived from it.!
–  So if you drop the GenParticles, then everything disappears!!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"22!

Questions so Far?"

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"23!

Get Started"

•  Go to your source directory!
•  Follow the instructions in this pdf file.!
!

8/5/2015!Kutschke/Session 14: Inventing a New Data Product"24!

