# Pierre Auger Observatory

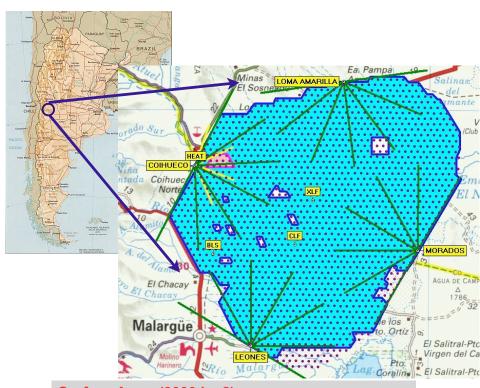


FCPA Retreat 2010

#### PAO @ FNAL

Eun-Joo Ahn, Aaron Chou, Henry Glass, Carlos Hojvat, Peter Kasper, Frederick Kuehn, Paul Lebrun, Paul Mantsch, Peter Mazur

450 scientists from 18 countries 17 peer-reviewed full collaboration publications


### Pierre Auger Observatory — Science Mission

- ◆ Fermilab's mission is to study the fundamental properties of matter and energy
- ◆ The PAO studies the nature of the highest energy matter particles in the universe
  - ★ The only experiment able to probe matter in this regime
    - ★ Determining the properties of particle interactions at greater than a hundred TeV center of mass energy (~10-30 times the LHC energy)
    - ★ Produced the only evidence related to the nature of potential sources via anisotropy — correlation with local large scale matter distribution
  - ★ First sky map at energies ≥10 Joules

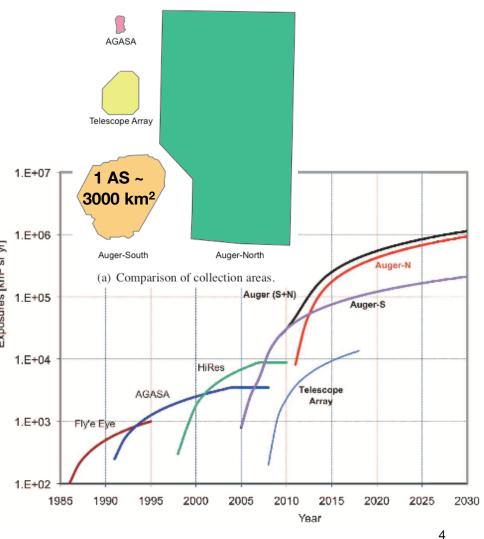
The mission of OHEP is to understand how our universe works at its most fundamental level

## Pierre Auger Observatory — Leading the Field

- ◆ The PAO is the largest cosmic ray experiment (> 10<sup>18</sup> eV)
- ◆ Size matters low rate of events at the highest energies
- Combines two established detection techniques
  - Fluorescence telescopes provide energy calibration and shower properties
  - Surface array provides statistics
  - Detector upgrades/enhancements proceeding



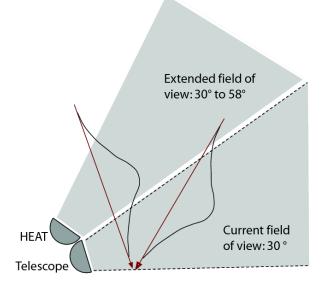
#### Surface Array (3000 km2)

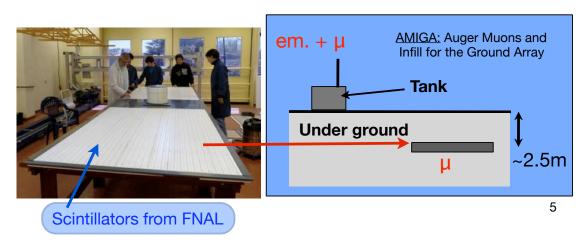

- •1642 surface detector tank assemblies deployed
- •1619 surface detector stations with water
- •1587 surface detector stations have electronics

#### **Fluorescence Detectors**

- •24 telescopes (6 at each site)
- •+3 telescopes for HEAT

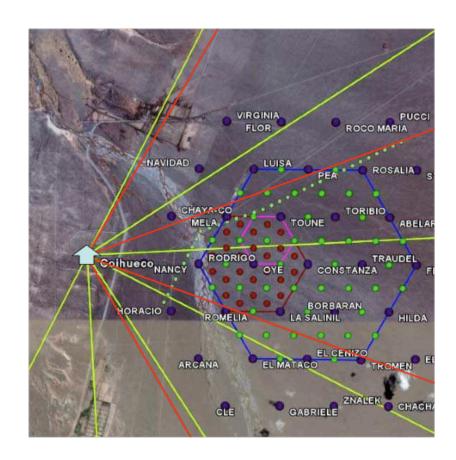
## Pierre Auger Observatory — Leading the Field


- Northern site science case has strong international support
  - See "Important Notes: Auger North" — slide 21 PASAG report, S. Ritz, 23/10/09
  - "We recommend that European groups play a significant role ... and ... make a significant contribution to the design and construction of a Northern Auger Observatory" — ASPERA roadmap Phase I, July 2008
- ◆ See, e.g., Angela Olinto's talk from last retreat for details of science case



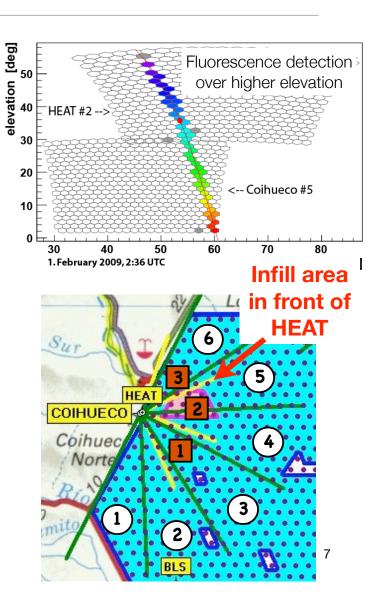

(b) Exposures as a function of time.

### Pierre Auger Observatory — Enhancements


- Upgrades further widen the gap between the PAO and other experiments
  - High Elevation Auger Telescope (HEAT) & AMIGA (Infill Array) extend energy range down in energy to 10<sup>17</sup> eV
  - Coherent radio emission, and molecular bremsstrahlung provide R&D for new, independent detection techniques calibrated to known methods
  - Lightning detection system expands physics potential

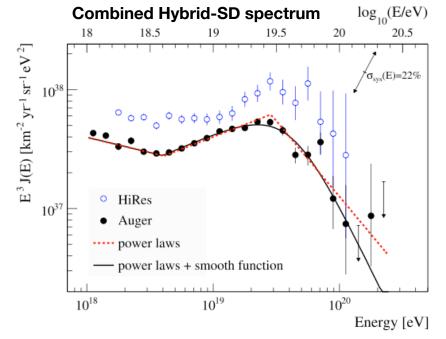





#### Pierre Auger Observatory — Enhancements

- Upgrades further widen the gap between the PAO and other experiments
  - Auger Muon and Infill for the Ground Array — AMIGA
  - FNAL supporting AMIGA by providing scintillators and manpower — still under construction
  - Muon to electron ratio important for composition measurement independent of fluorescence measurements




#### Pierre Auger Observatory — Enhancements

- Upgrades further widen the gap between the PAO and other experiments
  - HEAT 3 new fluorescence telescopes at same location of Coihueco, both looking over AMIGA
  - Measurement from 10<sup>17</sup> eV to >10<sup>20</sup> eV
  - 'Low' energy spectrum with 750 meter Infill surface array is already systematics limited
  - 433 meter Infill will start being installed this year, pushing the energy range even further down
  - Fluorescence Telescope Surface Detector energy cross calibration at lower energies given by HEAT+Infill
  - Results at next ICRC

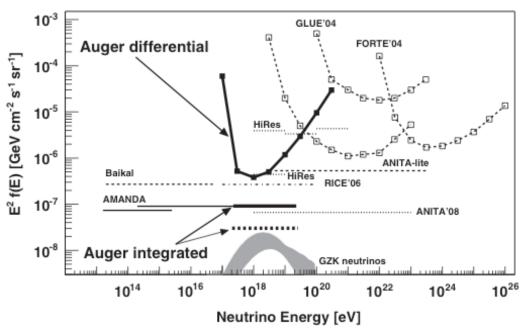


- ◆ Measurement of the energy spectrum of cosmic rays above 10<sup>18</sup> eV using the Pierre Auger Observatory, Phys. Lett. B **685** (2010) 239-246
  - First 'hybrid' (fluorescence+ground) and updated surface detector spectrum
- ◆ Measurement of the depth of maximum of extensive air showers above 10<sup>18</sup> eV, Phys. Rev. Lett. 104 (2010) 091101
  - Shows a significant difference in shower properties from proton-only model expectation
- ◆ Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79, 102001 (2009)
  - Best experimental limit on neutrino flux at EeV energies
- ◆ Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory, Astro. Part. Phys. **31** (2009) 399-406
  - First experimental limits on photons at energies at 10 EeV

- ◆ Measurement of the energy spectrum of cosmic rays above 10<sup>18</sup> eV using the Pierre Auger Observatory, Phys. Lett. B **685** (2010) 239-246
  - Cutoff seen at  $>20\sigma$
  - Overall energy scale systematic is 22%



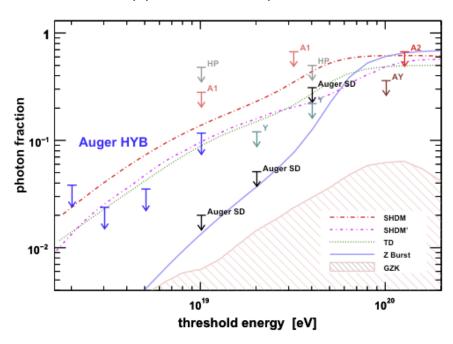
**Table 1**Fitted parameters and their statistical uncertainties characterising the combined energy spectrum.


| Parameter                        | Power laws       | Power laws + smooth function |
|----------------------------------|------------------|------------------------------|
| $\gamma_1(E < E_{\text{ankle}})$ | $3.26 \pm 0.04$  | $3.26 \pm 0.04$              |
| $log_{10}(E_{ankle}/eV)$         | $18.61 \pm 0.01$ | $18.60 \pm 0.01$             |
| $\gamma_2(E > E_{\text{ankle}})$ | $2.59 \pm 0.02$  | $2.55 \pm 0.04$              |
| $log_{10}(E_{break}/eV)$         | $19.46 \pm 0.03$ |                              |
| $\gamma_3(E > E_{\text{break}})$ | $4.3 \pm 0.2$    |                              |
| $\log_{10}(E_{1/2}/\text{eV})$   |                  | $19.61 \pm 0.03$             |
| $log_{10}(W_c/eV)$               |                  | $0.16 \pm 0.03$              |
| $\chi^2$ /ndof                   | 38.5/16          | 29.1/16                      |

$$\propto \frac{E^{-\gamma_2}}{1 + \exp(\frac{\log_{10} E - \log_{10} E_{1/2}}{\log_{10} W_c})}$$

- ◆ Measurement of the depth of maximum of extensive air showers above 10<sup>18</sup> eV, Phys. Rev. Lett. 104 (2010) 091101
  - New (high statistics) result showing for the first time a significant change from proton only model expectation
  - See Eun-Joo Ahn's accompanying talk, and upcoming 'Wine and Cheese' seminar for details

- ◆ Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79, 102001 (2009)
- Neutrinos can be associated with sources of cosmic rays, the GZK effect, and exotic particle decays
- ◆ Search is for T neutrinos oscillations over cosmological distances give flavour ratio 1:1:1
  - Skimming or upwards going events
  - None seen upper limits given

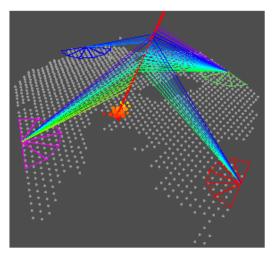

90% confidence level upper limit on neutrino flux



Systematics in exposure varies the limit Integrated limit assumes - flux  $\propto$  E<sup>-2</sup> Differential  $\propto$  E/Exposure

- ◆ Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory, Astro. Part. Phys.
   31 (2009) 399-406
- ◆ Photons produced by GZK, photodisintegration, and "top-down" models
- → Hybrid, and surface detector only limits
- All photon candidates can be explained as background (proton/iron events)
  - Photon and neutrino fractions with GZK model can distinguish proton vs. iron independently from shower maximum

# 95% confidence level upper limits on photon flux




### Pierre Auger Observatory — Roles @ FNAL


- ◆ Fermilab makes significant science, management, and technical contributions
  - Science: Leading efforts in analyses on composition and anisotropy
  - Management: FNAL is the home of the Auger project management
  - Technical: Surface detector design, Central Data Acquisition System (AN)



Auger South Tank 3 PMTs



Auger South Hybrid Event - CDAS



Auger North Tank
1 PMT
Insulated

## Pierre Auger Observatory — Science @ FNAL

- ◆ Fermilab Analysis
  - Anisotropy intrinsic and catalogue based
  - Composition cross sections, hadronic interaction modeling
  - Combined anisotropy/composition



Search for multiplets

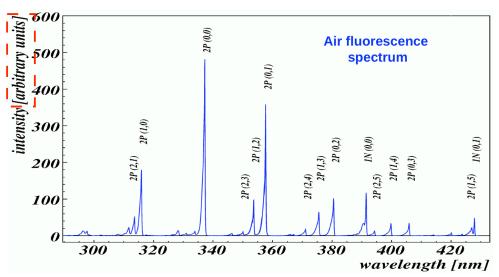
Exotic searches

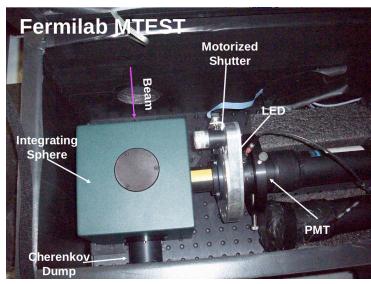
• 10 Auger internal ("GAP") notes

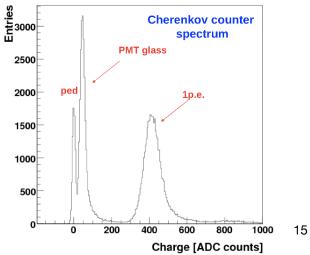

A Faraway Quasar in the Direction of the Highest | Energy Auger Event | Albuquerque & Chou 2010 |



**Update in progress** 





Cumulative number of event >55 EeV within an angle Ψ of Centaurus A




### Pierre Auger Observatory — Science @ FNAL

- ◆ AirFly Air Fluorescence Yield experiment used for Auger energy calibration
  - Science goal to determine the absolute yield of photons
  - Meson-Test facility integral to success







## Pierre Auger Observatory — Management @ FNAL

- ◆ FNAL is the home of the Auger project management
  - Fermilab plays a critical role in maintaining the existence of the PAO via management — also does everything from cost & scheduling, to MOUs determining support level and resources from member institutions
  - Fermilab has brought modern management techniques (including include cost and schedule tracking, elements of systems engineering and quality assurance, and ES&H programs) to the field, impacting both current science and future generations of physicists





### Pierre Auger Observatory — Technical @ FNAL

- ◆ Fermilab designed essentially all mechanical aspects and developed the production technologies for the surface detectors
  - Auger South tank design
  - Solar power system
  - Tank power control board electronics for advanced solar power controls
  - Auger North tanks and related insulation
  - Computing division support data storage and non-event database at FNAL



### Pierre Auger Observatory — Community

- ◆ A unique feature of the PAO is its broad, truly international character in that the project is not dominated by any country, region or institution
- ◆ Fermilab involvement was integral to creating a cohesive structure
  - Collaborators from 18 countries with backgrounds in cosmic ray physics, high energy physics, nuclear physics, astronomy, from large and small experiments — a mixture of national and scientific cultures
- ◆ Outreach Auger specific (e.g., school presentations, publicly available data sets for student use, visitor center, dance parties (www.cosmicsensation.nl), parades, hot air balloon launches, etc.), Quarknet, Lederman Center programs
- ◆ Hosting ISVHECRI 2010 conference (June 2010); US Auger meeting (May 2010)









### Pierre Auger Observatory — Future

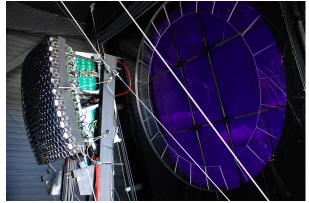
- ◆ FNAL currently plays a leading role on the Auger North RDA proof of principle for very large arrays; platform for R&D for and beyond Auger North
- ◆ Continued data analysis will shed light on the goals of understanding the sources, composition, particle interaction properties fulfilling the OHEP mission
- ◆ Fermilab has management, engineering, computing, and analysis skills combined with experience building and running Auger South which positions us for success in future cosmic ray experiments

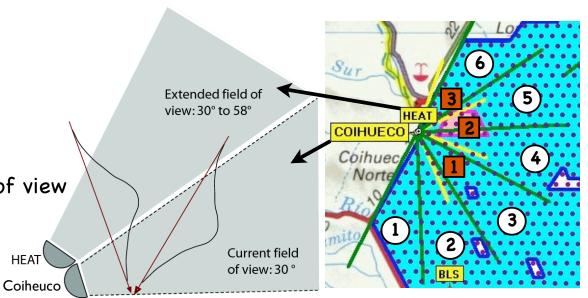


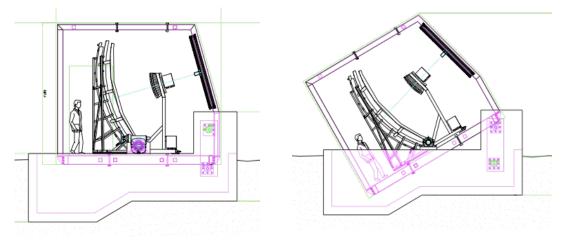


backup

#### 1. HEAT


- 3 tiltable telescopes


- Overlaps with Coiheuco FD


- 30°-58° elevation, extend field of view

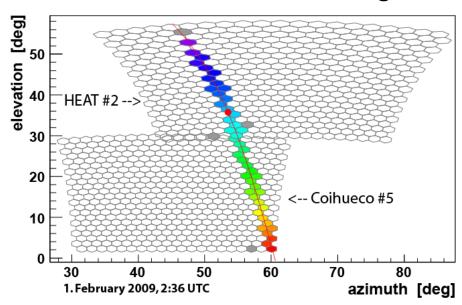
- Energy  $\sim 10^{17} \; \mathrm{eV}$ 





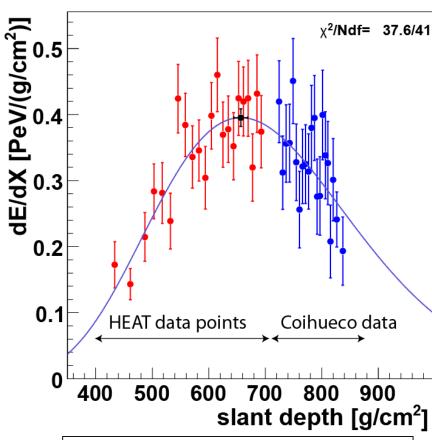





Calibration & maintenance position

Data taking position

Can observe in both tilt and down positions

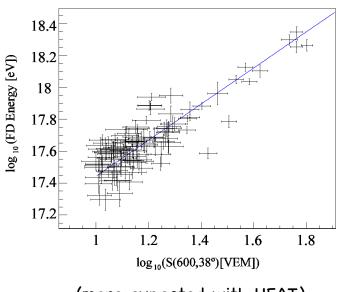

# First high quality hybrid event with HEAT

#### Camera view with timing

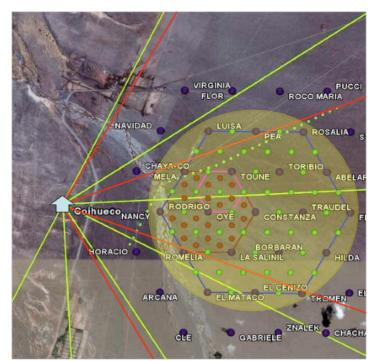


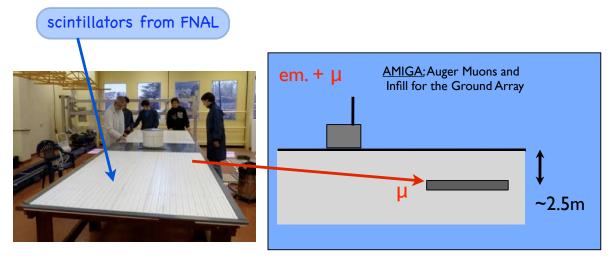
- Shower triggered in both telescopes independently
- Timing well matched
- Reconstruction of X<sub>max</sub> requires combined data

#### **Shower profile**




E = 
$$(2.0 \pm 0.2) \cdot 10^{17} \text{eV}$$
  
 $X_{\text{max}} = (657 \pm 12) \text{ g/cm}^2$ 


Distance: 2.8 km to FD


#### 2. AMIGA (Auger Muons and Infill for the Ground Array)

- 750m triangular grid
  - → 61 water Cherenkov tanks +
  - → 30 m² Minos-type scintillators underground
- Infill energy spectrum analysis in progress
- First muon detector buried in Nov 2009
- Deployment and analysis in progress



(more expected with HEAT)





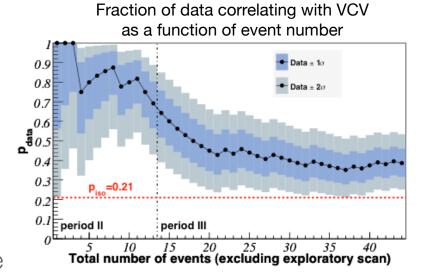
#### 3. AERA (Auger Engineering Radio Array)

- Coherent radiation from shower cascade
- 30-80 MHz
- Measure energy and composition
- Cost-effective, 100% duty-cycle
- Currently installing 24 stations over an area of 20 km<sup>2</sup>





(prototypes)


These technologies are still in development and we do not yet know if we can build a successful experiment with them

#### 4. R&D on microwave detection

- Molecular bremsstrahlung by electrons in air shower with surrounding medium
- ~ 4 GHz
- Study ongoing at Ohio State Uni. and Uni. Chicago

### Pierre Auger Observatory — Science @ FNAL

- ◆ Anisotropy studies @ FNAL
  - Plot only shows Poisson errors no systematics
  - Improving analysis techniques used in catalogue based search
    - ◆ More advanced analysis methods
    - Incorporating and understanding the effects of systematics
  - Catalogue based correlation update publication in progress





Update in progress

MAAAS