

Data from the fluorescence detector

slant depth [g/cm²]

(slant depth: air mass along cosmic ray trajectory)

Data selection

- ▶ Hybrid trigger: FD + 1 SD station
- ▶ Atmosphere & calibration
 - good camera calibration
 - measured aerosol profile
 - good atmospheric condition
 - cloud fraction < 25%
- > Fiducial volume cuts
 - distance to tank, zenith angle (energy dependent) <- minimise bias
 - field of view
- Quality cuts
 - -X_{max} observed
 - -low expected reconstruction uncertainty
 - -reduced χ^2 of profile fit < 2.5
 - -> Excellent reconstruction, good resolution for accurate studies

X_{max} resolution

- detector: check with MC
- density profile: seasonal variation of atmosphere & fluorescence yield
- aerosol: cleanliness of atmosphere

Systematic uncertainties

- mean: +10/-8 g/cm² (10^{18} eV) $\sim +12/-10$ g/cm² (10^{20} eV)
- RMS: $+-5 \text{ g/cm}^2$

Data collected: 2004.01 - 2009.04

Number of events after selection:

X_{max}'s behaviour: mean and fluctuation (RMS)

- Mean and RMS not entirely consistent for current models at the HIGHEST ENERGIES fluctuations smaller than expected from mean.
- Models give different prediction
- Need more data
 (max E bin < 4x10¹⁹ eV)

Aim: composition & particle characteristics (cross sections) at Auger energies

Models give different prediction

- Hadronic interaction model required for data interpretation
- EPOS, QGSJET, Sibyll ...
 - → phenomenology-based: dual parton, minijets, pomerons, strings etc.
- "low energy" fixed target and collider data
 - → cross section, particle distribution
- extrapolate to higher energies
- Tevatron -> LHC: $E_{lab} \approx 10^{15} \text{ eV}$ -> 10^{17} eV
- Auger's HEAT/AMIGA : E ≈ 10¹⁷ eV

-> gap is decreasing

JHEP 1002:041, 2010 arXiv:1002.0621

ALICE 7 TeV arXiv:1004.3514

CMS:
$$|\eta|$$
 < 2.4 -> 10° -170°

ALICE:
$$|\eta| < 1$$
 -> 40° - 140°

$$\eta = -\ln[\tan(\theta/2)]$$

Forward region

- cosmic rays deposit energy mostly in forward region <- crucial
- central region necessary
- LHCf, TOTEM

To understand composition, σ_{p-p} needs to be understood:

- energy-consistent estimation possible at CR energy for the first time
- effort is led by the Fermilab Auger group

possible due to presence of astro & particle physics in the same place

PRE-PRELIMINARY

not approved by the collaboration

- Tevatron -> LHC : $E_{lab} \approx 10^{15} \text{ eV}$ -> 10^{17} eV

- Auger's HEAT/AMIGA: E ≈ 10¹⁷ eV

-> smaller this gap, the better

Data and prediction of σ_{p-p}

- * LHC can tell us which theory is better
- * Auger can tell us which theory is better, up to a higher energy

X_{max} of Auger and HiRes

