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ﬂ Introduction

* | am a theorist interested in collider phenomenology.
« Main interest: higher order corrections in QCD.

* Author of next-to-leading order Monte Carlo code MCFM.

* Two lectures, today and Monday morning.
 Discussion session on Monday afternoon.
* If anything else comes up:

 catch me in my office: 3rd floor, East (cafeteria) side

* or email: johnmc@fnal.gov
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- Outline of lectures

» Review of leading order predictions.

* Investigation of soft and collinear kinematic limits.

* Theoretical underpinnings of parton showers.
 Modern parton showers.

* Higher order tools.

Reference: “General purpose event generators for LHC physics”
A. Buckley et al, arXiv: 1101.2599
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ﬂ Setting the scene

 All particles observed in experiments should be color neutral
— Nno quarks or gluons.

* How then can we mesh experimental observations with the QCD Lagrangian,
which necessarily involves the fundamental quark and gluon fields?

A scattering can be described in terms of energetic quarks and gluons
(partons) that subsequently hadronize, combining into color-neutral mesons
and baryons, without too much loss of energy.

* This concept is often referred to as local parton-hadron duality.
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energetic partons hadronization jets

 This naturally accommodates the replacement of jets of particles in the final
state by an equivalent number of quarks or gluons — LO picture.
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- Leading order tools

* The leading order estimate of the cross section is obtained by computing all
relevant tree-level Feynman diagrams (i.e. no internal loops).

* Nowadays this is practically a solved problem - many suitable tools available.

M. L. Mangano et al.

ALPGEN
http://alpgen.web.cern.ch/alpgen/
F. Krauss et al.
AMEGIC++ | N
http://projects.hepforge.org/sherpa/dokuwiki/doku.php
E. Boos et al.
CompHEP |
http://comphep.sinp.msu.ru/
C. Papadopoulos, M. Worek
HELAC
http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html
F. Maltoni, T. Stelzer
MadGraph

http://madgraph.hep.uiuc.it/
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The version 5 of the MadGraph Matrix Element Generator For the simulation of parton-level events
for decay and collision processes at high energy colliders. Allows matrix element generation and
I\/I ad G ra h event generation for any model that can be written as a Lagrangian, using the output of the
Q FeynRules Feynman rule calculator. Provides output in multiple formats and languages, including

Fortran MadEvent, Fortran Standalone matrix elements, C++ matrix elements, and Pythia 8 process
libraries.

'High En cergy Physics
_1linois

The MadGraph homepage
UCL UIUC Launchpad
by the MG/ME Development team

Generate My Cluster Downloads Bug
Process Register Tools Database — Status (needs account) Wiki  Answers reports

Generate processes online using MadGraph 5

To improve our web services we request that yvou register. Registration is quick and free. You may register for a password by clicking here.
Please note the correct reference for MadGraph 5, JHEP 1106(2011)128, arXiv:1106.0522 [hep-ph].
You can still use MadGraph 4 here.

Code can be generated either by:

1. Fill the form:
Model:

Input Process:

Model descriptions

Examples/format

Example: pp>w+ | j QED=3, w+ > 1+ vl

p and j definitions: ' p=j=duscd~u~s~c~g s

L

SUIMm over lcpmns: I+ = e+, mu+; |- = e-, mu-; vl = ve, vin, vt; vl~ = ve~, vim~, vt~

(" submit )

II. Upload the proc_card.dat
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PR Limiting factors

» Solved problem in principle, but computing power is still an issue.

* This is mostly because the number of Feynman diagrams entering the
amplitude calculation grows factorially with the number of external particles.

* hence smart (recursive) methods
to generate matrix elements.

8,000

@ Simple color treatment
€@ Smarter color handling

 Demonstrated by the time taken

to generate 10,000 events % 9,000
iInvolving 2 gluons in the initial IS

state and up to 10 in the final state. 4.000

* The lower curve shows a

smarter treatment of color 2000
factors, which become a limiting
factor too.
0
* active research area. 2 3 4 5 6 7 8 9 10

no. of gluons in final state

(adapted from C. Duhr et al., 2000)
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= Beyond fixed order

* Ten gluons doesn’t come close to the typical multiplicity in a collider event.

* Moreover, we want a tool that says something about hadrons, not partons.

* How can we hope to build something like this from scratch, using QCD?
 use universal behaviour of QCD cross sections to build parton shower.

combine perturbative calculations SM Higes prodaction

. . . 5 _
with non-perturbative modelling. 10 LHC

o [fb]
* Begin with an unlikely topic:
theory of Higgs production.

« Shown here are cross sections 103\
for different Higgs production \

modes at the (14 TeV) LHC.

104

« Here we are interested in the =
mode with the largest cross MU T

section: gluon fusion. 100 200 300 400 500
m, [GeV]
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= Higgs coupling to gluons

« How does this coupling take place?
Certainly not directly!

* The answer is through a loop, with the
Higgs coupling preferentially to the
neaviest quark available: the top quark.

“00000)

lgquark

“00000°

* |[n general, loop-induced processes are suppressed compared to tree-level

contributions - but at the LHC, gluons are plentiful

(especially compared to antiquarks).

* We're not going to perform this computation here, but note that in the limit that
the top mass is infinite the result is formally equivalent to the coupling obtained

by adding a term to the Lagrangian:

C y
Loo = 5 HF:,Fh
VAR I N
Qg Higgs gluon field

C =
67T field strength

‘Effective Theory” gives rise to ggH
coupling and new Feynman rules.

— Frank Petriello lectures
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 Also get 3- and 4-point vertices that mimic the structure of the pure QCD case.

B,

A « P

- Feynman rules: effective theory

C,y }552. —2Cg, f47¢ {go‘ﬁ(zﬂ —q")
B,3 00T 0@----- s +977(q% — )

TS
A)@/SSE

A, o

incoming)
+g7(r" = p?)
6666 B, 6 —QCiQZfABXfXCD 'gcwgﬁé o gaégvﬁ'
_____ H _QCZ-gngCXfXAD :gﬁagfyé o gﬂéga’y:
QQQQ C)f}/ _QC«Zg?fBCXfXAD :g’yﬁga5 o g’y5gﬁa:
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‘ Effective theory

 This effective theory is a good approximation.

gg - H at the LHC, vs = 7 TeV

N\, corrections < 20%

o [pb]

full theory
effective th. |

my [GeV]

effective theory approach
fails to catch any features
of the threshold region
around 2mt

* Moreover it is very useful for more complicated calculations

» chain new vertices together in order to compute cross sections that would

be intractable in the full (finite top mass) theory.

* e.g. producing additional quarks or gluons (i.e. jets).
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‘ Matrix elements

 First look at the squared matrix elements for this process (exercise: checkl!).

D2
_____ H Mgyl = 2(N2 —1)C?*mY,

P1

« Now consider adding a gluon (total of 4 diagrams - remember triple-gluon+H).

P2 P3
‘MHgggyz — 4Nc(Nc2 - 1)0295 X
_____ ’ (m% + (2p1-p2)* + (2p1.p3)* + (2p2-p3)4>

8p1.P2 P1.P3 P2.P3

P1

* Inspect this in the limit that gluons 2 and 3 are collinear:
po=2z2P, p3=(1—2)P
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BB Coliinear limit: gluons

« Under this transformation we can make the replacements:

2p1.p2 — zmi; , 2p1ps — (L—z2)m3, 2paps — 0,

and simply read off the answer:

. 1 4 1 — 4
‘MHggg‘Q S 4NC(N3 - 1)02957”%[ ( - —I_( Z) >

22(1 — 2)p2.p3

* This clearly shares some features with the Hgg matrix element squared we
just calculated, which we can exploit to write it in a new way:

coll. 29?
‘MHggg‘z ’ 20013 ‘MHggPng(Z)

Here the collinear splitting function, which only depends on the relative weight
in the splitting (z), is defined by:

G
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BB Coliinear limit: quarks

« Same trick with the two collinear gluons replaced by quark-antiquark pair.

P2 P3
’Mchjq‘Q — 4TR(N3 - 1)C29§
_____ ’ X <(2p1-p2)2 + (2p1-p3)2>
2p2.p3

P1

* We find a similar result. In the collinear limit, the matrix element squared is
again proportional to the matrix element with one less parton:

coll. 292
’Mchiq‘z ’ 2p2;3 ’MHggPqu(Z)

The splitting function this time is given by:

Pyy(z) =Tr (Zz + (1 - 2)2)
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‘ Collinear limit: quark-gluon

 To investigate this last case, we don’t need the Higgs interaction.

P2
¢ p3 (2 diagrams)
virtual photon
P1

(Q%>0)

Moygqql” = 8NCCF6293 X

M * 2 — 4NC62 2
‘ Y qq‘ qQ <(2p1,p3)2 -4 (2p2.p3)2 + 2@2(2]?1-2?2))

4 p1.p3 p2.p3

* A similar analysis, with the gluon carrying momentum fraction (7-z), leads to

the result: ,
1+ 2z
P =
2q(%) F ( 1 _ . )
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E Universal factorization

* The important feature of these results is that they are universal, i.e. they apply
to the appropriate collinear limits in all processes involving QCD radiation.

* They are a feature of the QCD interactions themselves.

C
a, c coll. 2 g 7'Z
Mae [P 55" 2 | My PPa(z) D
Pa-Pc
/v Z
collinear singularity a
1+ 22 additional soft
Pyq(2) = Cr < 1_ . ) /singularity as z—1
2 1 — )2 2(1 _ \2
Pyg(2) = 2N, k) B k)
2(1 — 2) ~Z
qu(z) — Th (22 4 (1 B 2)2) Soft fOI’Z—’O, z—1
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ﬂ Infrared singularities

* These are called infrared singularities, which occur when relevant momenta
become small.

 they are thus indicative of long-range phenomena which are, by definition,
not well described by perturbation theory.

 at such scales are approached, hadronization takes over and apparent
singularities are avoided.

* |In perturbative QCD we avoid such issues by restricting our attention to
iInfrared safe quantities that are insensitive to such regions.

 for example: in our leading order calculations, we try to describe jets with
large transverse momenta, not arbitrarily soft particles.

« useful to regularize such singularities: they appear in intermediate steps of
a calculation, but must disappear at the end (for physical observables).

* this is a statement of the Kinoshita-Lee-Nauenberg (KLN) theorem.
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PR e silver lining

* On the positive side:

* we have learned that emission of soft and collinear partons is favoured;

« we know exactly the form of the required matrix elements when that occurs.
 |n fact it also applies to the phase space too.

« Start from the standard phase space formula:

d° i D

d’pa d’pe
(2m)32F, (2m)32E.

dPS(“_)aC = ( : )

and note that, if we fix the momentum of a, we can relate these by:

3y 1 ELE
P Ly dPS(. v -

dE, 0,d0,
(27)32E, E. (2m)? 2E,

(for 0a ~ O)

dPS(...)ac — dPS()b

Generators - John Campbell - 18



‘ Small angle approximation

« “Small angle” kinematics of the collinear limit:

Pa = 2Pb sPe = (1 — 2)ps
— b, =zE, , E. = (1 —Z)Eb

20, —(1—2)0,=0 — 0,=(1—2)(0,+86.)

* Now relate t, the virtuality of b, to the opening angle 6=65+6c:

2E26?
1—z

t = (pg 4+ pe)® =2E,E.(1 —cos0?) = Efz(1 — 2)0% =

« Hence we can write the factorized form in this limit as,
1 EaEb (1 — Z)Eb dz dt
dz dt = dPS
(27)2 2B, 2:E2 (b 162

dPS(...)ac — dPS()b

« Combining this with our previous matrix element factorization formula gives:

dt
t

s
do(. yac = M. )ac2dPS(. yae = do(. yp <2W) Pap(z) dz
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= Parton showers

<\ dt
“ ) P.p(2) dz

do., :dn(
Tt 7 2w/ 1

« This is an important equation: it tells us how we can generate additional soft
and collinear radiation ad infinitum.

» Technically this is called timelike branching since we have implicitly assumed
that all particles are outgoing (£>0).

 extension to the spacelike case (radiation on an incoming line) is similar.

* This is the principle upon which all parton shower simulations are based.
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- Popular parton shower programs

1. Sjostrand et al.

PYTHIA . .
http://home.thep.lu.se/~torbjorn/Pythia.html
G. Corcella et al.

HERWIG |
http://hepwww.rl.ac.uk/theory/seymour/herwig/

_ S. Gieseke et al.

HERWIG++ | |

http://projects.hepforge.org/herwig/
F. Krauss et al.

SHERPA | .
http://projects.hepforge.org/sherpa/dokuwiki/doku.php

_ H. Baer et al.
ISAJET

http://www.nhn.ou.edu/~isajet/
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‘ Inside a parton shower

* The defining equation can be interpreted in terms of the probability of having a
parton branching with given (x,t) at some point in the shower: let's call it f(x,1).

« For simplicity, let's assume that the evolution doesn’t change the parton
species, e.g. an all-gluon shower (extension is straightforward).

* Now consider a small change from t to t+t and its effect on f(x,1).

y > 6{{{i. Wﬁ@i)_%ééiwdzeﬁ)P@@%ﬂ%ﬂﬂw—zw

00000 z =
) Pag(2)(/2,1)

y Ot 1d2(&8

+ve effect from 9
. T
higher momenta

splitting

7 ){{{{i O0f (x,t) = %f(az,t) /090 dy dz (;—;) P,,(2)0(y — zx)

00000 z =

Ot 1 o

-ve effect from = — f(z, t)/ dz (—S) P, (2)

qg
splitting into y<z ¢ 0 2m

smaller momenta Generators - John Campbell - 22
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BB The DGLAP equation

« By taking the difference can reinterpret this as a differential equation for f(x,{):

It a2 (22) Pute (S16/20) - 5(2.))

* This is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation.

* |t is most convenient to expose a solution to this equation by introducing a
Sudakov form factor, A(t).

t /
A(t) = exp {—/ — /dz (&_) P b(z)}
o U 2T
« Hence we can rewrite as:

tﬁf(m,t) :/dz (ozs) Py () f (2 /2. 1) fim(;;f) tﬁ({i(t)

=
~—
N
-~
1T
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= The Sudakov form factor

* Integrate up to find solution given boundary condition at t=to:

Ldt' A dz /o
) = AOf@to) + [ Gas [F(52) Pl (/0
no branching \
between to and t

iIntegrate over multiple branchings; for each
value of t, no branching between t’ and t

* Interpret Sudakov form factor as the probability for no parton emission

* better: no resolvable parton emission. We must cut off the z-integration as
z—0,1 to avoid the singularities found before. Above cutoff unresolvable.

* The Sudakov interpretation lends itself to Monte Carlo methods
(universally used in parton showers):

* pick a random number rin [0,1] and determinate t> from t; and AL) =7

» can generate z according to integral over correct Pap for splitting.
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‘ Exponentiation

 Limits on emission depend on definition of “resolvable” for the shower

. Gi S t’
simplest case: © PR

to to

« Now consider probability of no resolvable branchings from a quark:

dt/ 1— to/t
Ag(l) = exp / / ) Paq(2)
to/t’

dt/ 1 t()/t
~ exp —CF / //
to/t’ o

~oxp | =Cr (27T)10g tg}

« Exponentiation sums all terms with greatest number of logs per power of as

* hence the terminology, leading log parton shower
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= Evolution variables

* We have used the virtuality, t as the evolution variable here, but other choices

are possible.

dt
« Recall the form of the evolution equation: -

and the relations:
t = 2(1 — 2)E;6°

ph = 62E2 = 22(1 - ) E}6°

dt _ d9° _ dpy

which, for constant z, imply that: = — = —3
t 0 %

« Different choices of variable - virtuality, angle x energy, transverse momentum
- are equivalent in the collinear limit

* but give different results away from that region

* most modern showers pr-ordered (except Herwig, angular-ordered)
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= Color effects

* Parton shower is initiated by emission from a “color line” consisting of two
color-connected partons

 formally, large-color limit (Nc—=), where gluon color = quark-antiquark color

\\//

quark-antiquark
QCD scattering

//

<

quark-antiquark
electroweak scattering

N

)

small-angle radiation throughout radiation only at
scattering: the event small angles

« Color coherence even stronger: each successive emission occurs at a smaller
opening angle than the last emission — shower exact to next-to-leading log.

« automatic in angular ordering, otherwise additional work required
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‘ Color coherence at wor

 Top forward-backward asymmetry: Aﬁb

« QCD theory: non-zero only beyond LO.

K

o(ye > 0) — oy <0)

o(ye > 0) + oy <0)

1960 GeV ppbar Top MC

» Parton shower only LO — zero? No! - 1E
06 - Asymmetry vs p_(tf) _E
= Herwig++ ‘:
. 0.4 ' . Pythia 6 (DET) E"
color coherence: negative o “F . Paias (70 I
asymmetry at large to e - Sherea
Y Y 99O coherence T Rk
SyStem reCO” % ﬂ_,,“,._f.a..“,._.,ﬁ.i-:.a-irb--i'“‘E"'i'ﬁi'ﬁ.'é“é'é“*!l-&ﬂﬁi‘?:'
0 [T eneeenanyst o A N
A N 1. BTt & LE L
""‘1-4 ;|."|‘ - ¥ o ! .
\ / b S o Fa M :
: over- oo s
estimateoilj Nl
h Herwig++ 2.5.2, Pythia 6.426, Pythia B.162, Sherpa 1.4.0 %ﬂ_
_l | | i I | i | | i | | i | .|_
0 50 100 150 EDDE

ot (top system)
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= Ending the shower

« Eventually the evolution will bring us to a very small scale of t at which we no
longer believe in the perturbation theory (say ~ 1 GeV). Beyond that point we
no longer perform any branching.

 All partons produced in this shower are showered further, until same condition.

* Once this point is reached, no
more perturbative evolution
possible.

« Partons should be interpreted
as hadrons according to a

artonic . .
P hadronization model.

matrix element

NOILVZINOddVH

« examples: string model,
cluster model.

* Most importantly: these are all phenomenological models.

* They require inputs that cannot be predicted from the QCD Lagrangian ab
initio and must therefore be tuned by comparison with data (mostly LEP).
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Events/0.5 GeV/c

= Parton shower advantages

A parton shower allows us to (attempt to) describe features of the whole event:
the output is high multiplicity final states containing hadrons.

« \ery flexible framework. In principle, start with any hard scattering (e.g. any
theorist’s latest and greatest model) and the PS takes care of QCD radiation.

PYTHIA
CDF DATA

10 20 30 40 50 60
e*e” pair P, (GeV/c)

/ boson transverse momentum

70

* |In contrast to a pure leading
order prediction, a parton
shower can be matched to
data even at low pr.

Z

g

* This is true in general:
broader region of applicability.

Generators - John Campbell - 30



‘ Warnings

« By construction, a parton shower is correct only for successive branchings that
are collinear or soft (i.e. only leading/next-to-leading logs).

« Should therefore take care
when describing final states
iIn which there is either
manifestly multiple hard
radiation, or its effects might
be important.

« example: simulation of
background to a SUSY
search in the ATLAS TDR.

M,

di

(Events/ 200 GeV)

10 E-t______. ——

10 ¢
10 7E

2
10 ¢

10 §

R

ATLAS
*‘ * ALPGEN (Z—vv)+4
| .

%,
P .
| signal
?, 9

e PS | ";1* /

(bkg) 1 *
Pythia

*
v o,

Z f_L- f"’_

LBNL-5564 |

1000 2000
M, (GaV)

J000

» Higher-order corrections are not included.

4000

Improved
background
calculation

Megt = 5 |prepy| + Er

« Uncertainty can only be estimated by comparison with data and/or between
different parton shower implementations.

 exact details of each shower differ, possibility for significant differences.
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- Recap

* There are many tools capable of producing leading order cross section
predictions from scratch.

* They are limited only by computer power: as a result, cannot generate more
than 10 particles in the final state (program/process specific).

* The factorization of both QCD matrix elements and phase space, in the soft
and collinear limits, allows us to generate arbitrarily many such branchings.

» factorization of matrix elements: universal Altarelli-Parisi splitting functions
* factorization of phase space: small angle approximation.

« Such a formalism leads to a DGLAP evolution equation for the probability of
finding a given parton within the branching process.

* Introducing a Sudakov form factor leads to an interpretation which is easy to
implement as a parton shower (e.g. Pythia, Herwig, Sherpa).

» can describe exclusive final states (hadrons), even down to small scales;

* in regions of hard radiation the soft/collinear approx. may not be sufficient.
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