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e Outline
= Day One:

* luminosity

* a little history -- the modern synchrotron

* magnets and cavities

* longitudinal dynamics
* transverse dynamics

= Day Two:
« Courant-Snyder variables (the ‘beta’ function)
 transverse emittance
 momentum dispersion and chromaticity
* linear errors and adjustments

= Day Three:
* beam-beam interactions
* hour glass and crossing angles
* diffusion and emittance growth
 luminosity optimization
* future directions
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Particle Trajectories f

1 FODO “cell”

= | et's develop an analytical description:
(Hill’s Equation)

dz’ d’z eB’(s) 1"
L s b T Kis)g =0
ds ds? v & * ( )
. o . . [K(s) _ 9By
= | ook for oscillatory solution with modified amplitude ... p Ox
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Particle Trajectories )
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= | et's develop an analytical description:
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Particle Trajectories
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Particle Trajectories
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Analytical Solution

T
L. 3

= our assumption: x(s) =  A+/B(s)sin[y(s) + 9]
. take 1st. 2nd = %Aﬁ‘%ﬁ’sin[w(SH(ﬂ+A\/BCOS[¢(S)+5]¢’

derivatives.. N7

Plug into Rill's Equation, and collect terms...

4 K(oa = AV +5w]cosw<s>+6]
O XL SEEQRTAI I

A and 0 are constants of integration, defined by the initial
conditions (x, zy) of the particle. For arbitrary A, §, must
have contents of each [ ] = 0 simultaneously.
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# Analytical Solution (cont’d) @ f

= Thus, we must have ...

/ 1 1\ 2 1 3"
@b”+§¢’:0 and 1(662) I 5%—(w’)2+K:O
6¢//+6/¢/:O 266//_(6/)2_462(¢/)2 __4K62:O
(BY") =0 268" — (8')? + AK3* = 4
3" = const

' =1/p

Differential equation

e function 5(s) 1s the that the amplitude
Note: the phase advance is an | function must obey
observable quantity. So, while could ocal Wavelength ()\/QW)

choose different value of const, then of the oscillatory motion.

would just scale 3 accordingly; thus,
valid to choose const = 1.

MICHIGAN STATE
UNIVERSITY

M. Syphers  HCPSS2012 Aug 2012 46



# Some Comments \,"

= We chose the amplitude function to be a positive definite function in its
definition, since we want to describe real solutions.

= The square root of the amplitude function determines the shape of the
envelope of a particle’s motion. But the amplitude function also is a local
wavelength of the motion.

* This seems strange at first, but ...

* Imagine a particle oscillating within our focusing lens system,; if the lenses are
suddenly spaced further apart, the particle’s motion will grow larger between
lenses, and additionally it will travel further before a complete oscillation takes
place. If the lenses are spaced closer together, the oscillation will not be
allowed to grow as large, and more oscillations will occur per unit distance
travelled.

* Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate of
change of the oscillation phase as well as the maximum oscillation amplitude.
These attributes must be tied together.
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The Amplitude Function, 3 ()

Higher (3--
smaller phase advance rate
larger beam size

S Lower [5--
\ greater phase advance rate
smaller beam size

= Since the amplitude function is a wavelength, it will have numerical values
of many meters, say. However, typical particle transverse motion is on
the scale of mm. So, this means that the constant A must have units of
m'2, and it must be numerically small. More on this subject coming up...
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JE  Equation of Motion of Amplitude ()
e Function %

From
283" — (§)° + 4K ° = 4

we get

26,6”—1_266”/_Qﬂ/ﬂ/l+4K,62+8Kﬁﬁ/:O
3"+ 4K3 +2K'3 = 0.
Typically, K'(s) =0, and so

(6//"'4[(5)/ —0

or

3" 4+ 4K 3 = const.

is the general equation of motion for the amplitude function, (.

(in regions where K is either zero or constant)
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Piecewise Solutions @)

-
L. 2

= K=0:

abo\a\

1
ﬁ,/ — COnSt — 6(8) p— 60 —|— 668 —|_ 5/86,82 Par

» since § > 0, then from original diff. eq.: 283" — (3')* =4

. the parabola is always concave up 6" > ()

= K>0,K<DO0:

B(s) ~sin /cos or sinh/cosh + const
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L, Courant-Snyder Parameters, & r
"  Connection to Matrix Approach

= Suppose, for the moment, that we know the value of the amplitude
function and its slope at two points along our particle transport system.

= Have seen how to write the motion of a single particle in one degree of
freedom between two points in terms of a matrix. We can now recast the
elements of this matrix in terms of the local values of the amplitude

function.

= Define two new variables, i 1+ o2
o = __ﬁ Y ,y — ﬂ

= Collectively, 3 ~_ are called the Courant-Snyder Parameters
(sometimes dglled “Twiss parameters” or “lattice parameters”)

MICHIGAN STATE
UNIVERSITY

M. Syphers  HCPSS2012 Aug 2012 51



# The Transport Matrix @)

= We can write: x(s) = ar/Bsin Ay + b\/E cos A

= Solve for a and b in terms of initial conditions and write in matrix form

* we get:
1/2
. (%) (cos A + ag sin Ay) V (o3 sin A 2
( T’ ) T | 1t sin A — 24222 cos Ay (@)1/2 (cos Ay — asin A) ( 0 )
V/ BoB3 /BB E

Au is the phase advance from point
So to point s in the beam line

MICHIGAN STATE
UNIVERSITY

M. Syphers  HCPSS2012 Aug 2012 52



# Periodic Solutions @ |

= Within a system made up of periodic sections it is natural to want the
beam envelope to have the same periodicity.

= Taking the previous matrix to be that of a periodic section, and demanding
the C-S parameters be periodic yields...

Mo cos A + asin Ay B sin Ay
periodic = —y sin Ay cos Ay — asin A

Mperiodic

\ Natural choice in a circular accelerator, when

values of 3, a above correspond to one particular
point in the ring

MICHIGAN STATE
UNIVERSITY

M. Syphers  HCPSS2012 Aug 2012 53



- Propagation of ©)
e Courant-Snyder Parameters 7
= \We can write the matrix of a periodic section as:

Ve — cos A + asin A [ sin A
o= —~ sin A cos Ay — acsin Ay

( (1) (1) )COSA¢+( —CVW —604 )SinAw

= [cos Ay + Jsin Ay S
= where 3
J = ( o ) detJ =1, trace(J)=0; J*=-1I

o, B are values at the beginning/end of
the periodic section described by matrix M
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# Tracking B, a, V ... )

» et M7y and M2 be the “periodic” matrices as calculated at two points, and
M propagates the motion between them. Then,

Mo
M1

M; = I cos Ay + J; sin A

I MZZMMlM_l

>
: >
| I
| |
—> —>

M M
= Or, equivalently,

* if kKnow C-S parameters (i.e., J ) at one point, can find them at another point if

given the matrix for motion in between:

J:<—&7 —ﬁ@> JQZMJ1 M_l

= Doesn’t have to be part of a periodic section; valid between any two
points of an arbitrary arrangement of elements
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Evolution of the Phase Advance

= Again, if kKnow parameters at one point, and the matrix from there to
another point, then

a b b
Mi_o = — = tan AU _,
1—2 (c d) 031 — b an AYi_,9

4 )
= So, from knowledge of matrices, can “transport” phase and the Courant-
Snyder parameters along a beam line from one point to another
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# Simple Examples &)

* Propagation through a Dirift: M = < (1) f >
— tan—l L
— Ay = tan (ﬂl—Loq)
= Propagation through a Thin Lens: 3= o — 2L + o L?
a = ap — Yol
1 0 .
M = (—1/F 1) T =0
— AY =0
5 = Do
a=ag+ By/F

¥ =0 + 200/ F + (o / F?

= Given a, B at one point, can calculate a, B at all downstream points

MICHIGAN STATE
UNIVERSITY

5 W
LNS h&c&" M. Syphers  HCPSS2012 Aug 2012 57




Choice of Initial Conditions &)

= Have seen how f can be propagated from one point to another. Still,
have the choice of initial conditions...

= |If periodic system, like a “ring,” then natural to choose the periodic
solution for B, a

= |f beam line connects one ring to another ring, or a ring to a target, then
we take the periodic solution of the upstream ring as the initial condition
for the beam line

= |n a system like a linac, wish to “match” to desired initial conditions at
the input to the system (somewhere after the source, say) using an
arrangement of focusing elements
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# Computation of ,'

Courant-Snyder Parameters

= As an example, consider again the FODO system

= (e )G V) e V) o )

(e e ) (e aiir )

B 1+ L/F 2L + L?/F
- ( —L/F? 1—L/F—L2/F2>

* Thus, use above matrix of the periodic section to compute functions at the
exit of the F quad..
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f
1

# FODO Cell

* From the matrix: M—<1+L/F OL + L2/F )_(a b)
= o c d

call i1 = Aq —L/F?* 1—-LJ/F —L*/F*?

Here, 1 1s

phase advance L
VL | traceM =a+d=2-12/F* =2cosp 5y smh =

b 1+ L/2F a—d 1+ L/2F
sin 4 1—L/2F 2 sin p 1—L/2F

= |[f go from D quad to D quad, simply replace F --> -F in matrix M

 at exit:
11— L)2F
“T T\ 11 LeF

M. Syphers  HCPSS2012 Aug 2012 60
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# Low-Beta
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= |n drift, amplitude function is a parabola:
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# Betatron Tune |

= Since z(s) = AV/B(s)sin[y(s) +46) and ' =1/3
then the total phase advance around the circumference is given

b
y "ds

’l./)tot = 2TV = F
The tune, v, is the number of transverse “betatron oscillations”
per revolution. The phase advance through one FODO cell is

' L
given by VYeett = 2sin™? (Q_F)

Example: For the Tevatron, L/2F = 0.6, and since there are
about 100 cells, the total tune is about 100 x (2 x 0.6)/2x ~ 20

= Note: since betatron tune ~ 20, and synchrotron tune ~ 0.002, it /s
(relatively) safe to consider these effects independently

= “circular” accels --> resonance conditions; choose funes carefully!
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4+ FODO Cells (arcs) @)

L =30 F =25
max, min values of S: 120 , | | | .
100
1+ L/2F
6mam,min = 2F / 80
1F L/2F
B (s)
60
By(s)

entering, exiting a thin lens quad:

AB" = F26/F

0 10 20 30 40 50 60

Ex: Tevatron Cell
between the quadrupoles: X eV

, sin(u/2) = L/2F = 0.6 — pu ~ 1.2(69°)
B(s) = Bo — 2aps + Y08 Bmaz = 2(25 m),/1.6/0.4 = 100 m
Bumin = 2(25 m),/0.4/1.6 = 25 m
V%lOOX 12/27TN20
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Computer Codes .

= Complicated arrangements can be fed into now-standard computer codes
for analysis
« TRANSPORT, MAD, DIMAD

—— betax
« SYNCH, CHEF, many more T ety
, , L B B
------ etax
o _|
TITE N
FRID SIPARATOR AT 50,0 MEV
UTRANSFORT
5 0o
MORL: MARER
R332 WAER
MRS nxER Te)
0 MO MR —
R3S WEER
POG -2
=_ra 92 0 3000 - -
QO M 2.9 P71 IO, LeB, D00 200, DYPud 000
15 BA: GRIOC, Laf), 000000, DP.0. 000
QuOd? a2 2. 0000
QUOdS 11 -1.arTaen DT295 WRIFT, Le 0.25000
QON 13 Al CI208 :MATRIX, R1l. @.9907), P12. -0.00082, L
Quom . iem R2te 0.29740,822« 0.59999 800 9,99993 504 2,002, & o _|
DR e ] Rele 021N, e 2,999, L -
g,u.- . _:7“‘,‘,' e 100000, Stée 100000
S N MR BF295 L INE={PXT D295, CT295 D129 50
QUOnY 2 M2
OPESRATION LIST DTISG ORIFT, Le 0.2500O0
il CT256 ATRIX, Rile 2.99995, R« -0.00002, &
P = 0003 0220 G900 K55, 09000 K00 8. 00002, L
025740, Fdde 2.99993, &
tioseamst 100000, Wibe 1,000
it ansa BP0 L INEL(XCT, DT 206 L1206 01206 Ax8) 0 —
iz anra »
L)
q DT257 (WRIFT, Lo 0.25000
BEENT 6 ST AP CI29T :MATRIX, R1l. 0.9907), P12. -0.00082, &
Rt DRI R22= 0.99999 200 2.99995 504« 2,002, &
Pele 023, M4 2,999, L
oM 0em ” e 100000, Sté. 1.00000
L 1 4om o.em PF297 il INE{PXT ,DT297,CT297 01297 5x8)
e 2 4mm o.em
o0 1 4sm aam Of: GEIOK, La0.08 o
- R RO R V3 GKICK, Le0.29
o 5 45% -a.4m
QT a ... t 3%
D4 7 142 o.wn
QO 3 12w a.em
o v .4 Q.7
ot 0 449 e
o U oaw amm | | | | |
m 2 .49 4.7
Qon 0 o -2
B 4 eme sme 0 10 20 30 40
Qo - 7.4 o,
o 15 5o 0sen
™ | 5 5. " 0.
e 13 sow e Path Length, s [m]
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# Review @ |

= Found analytical solution to Hill's Equation:

= A+/(s) sinf[i(s) + 6]

= So far, discussed amplitude function, 3

= \What about A?
* Given B(s), how big is the beam at a particular location? mm? cm? m?
* If perturb the beam’s trajectory, how much will it move downstream?

= Want to go from discussing single particle behavior to discussing a
“beam” of particles
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-

=5 Betatron Oscillation Amplitude

J
0 l

S

= Transverse oscillations in a synchrotron (or beam line) are called Betatron

Oscillations (first observed/analyzed in a betatron)
= Write x,x’ in terms of initial conditions xo, X0 :

z(s) = ar/f cos Ay + by/ S sin A
r = %([b — aa) cos A — |a + ba] sin Av)

b _ oL -+ 60£E0

T VBo

\ / 5130 COS A@D + Oé()wo + ﬂowo) sin Aw]

amplitude: A = \/$g+(o‘0‘”0+505’36)2

Bo

MICHIGAN STATE
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== Free Betatron Oscillation O |

= Suppose a particle traveling along the design path is given a sudden
(impulse) deflection through angle Ar — 7' — AQ
r =Xy =

= Then, downstream, we have

r(s) = A0/ BoB(s) sinth(s) — o]

X/P\/Q

Example:
Suppose Af = 0.4 mrad, 5y = 4.0 m, 5(s) = 6.4 m,
and Ay =n x 27 + 30°. Then x(s) = 1 mm.
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Courant-Snyder Invariant &)

T
L. 3

* |n general,
r = Ay/fBsiny v? + (B2 +ax)? = A%
= %[COS@D — o sin 9] A2 — 2?4 (ﬁwﬁ' + ax)?
Bz’ = A\/Bcost — asin ] _ 7% + o’x? + 2a0fxx’ + 32x'?
= A\/Bcosw — Qx 15

B’ +ar = A\/Bcost

A = vyx? + 2axx’ + B2*

While C-S parameters evolve along the beam line, the
combination above remains constant.
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o Properties of the @
e Phase Space Ellipse

= The eqgn. for the C-S invariant is that of an ellipse.
= |[f compute the area of the ellipse, find that

area = mwA?

l.e., while the ellipse
changes shape along the
beam line, its area remains
constant

Emittance = area within a phase
space trajectory

vt + 2o’ + Bx’? = A?

area = TA? = ¢

MICHIGAN STATE
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# Motion in Phase Space ’

* Follow phase space trajectory...

Zﬁ\ equal areas

@ <\\ X
/q

Phase Space area is preserved
(Liouville’s Theorem)
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Beam Emittance @ |

* Phase space area which contains a certain fraction of the beam particles

-
L. 3

= Popular Choices: ,
* 95% *
* 39%
« 15%

MICHIGAN STATE
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# Adiabatic Damping from Acceleration

* Transverse oscillations imply transverse momentum. As accelerate,
momentum is “delivered” in the longitudinal direction (along the s-
direction). Thus, on average, the angular divergence of a particle will
decrease, as will its oscillation amplitude, during acceleration.

Ap, from RF system

="
T/

*= The coordinates x-x" are not canonical conjugates, but x-px are; thus, the
area of a trajectory in x-px phase space is invariant for adiabatic changes
to the system.

MICHIGAN STATE
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# Normalized Beam Emittance @)

* Hence, as particles are accelerated, the area in x-x’ phase space is not
preserved, while area in x-px is preserved. Thus, we define a
“‘normalized” beam emittance, as

ey =€ (67)

= |n principle, the normalized beam emittance should be preserved during
acceleration, and hence along the chain of accelerators from source to
target. Thus it is a measure of beam quality, and its preservation a
measure of accelerator performance.

* |n practice, it is not preserved -- non-adiabatic acceleration, especially at
the low energy regime; non-linear field perturbations; residual gas
scattering; charge stripping; field errors and setting errors; etc. -- all
contribute at some level to increase the beam emittance. Best attempts
are made to keep this as small as possible.
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Gaussian Emittance @)

= S0, hormalized emittance that contains a fraction f of a Gaussian beam is:

ey = —2mIn(1 — f) (;”((;))

(B7)

Lorentz!
= Common values of f:

£ | en/(B7)

95% | 67o*/f
86.57% 47—‘-0-2/6 Perhaps most commonly

39% 7-‘-0-2/6 < - used, sometimes called the

‘rms” emittance; but, always
15% 0‘2/5 ask if not clear in context!
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# Emittance in Terms of Moments

* For each particle, xr = A\/E sin — %(cosw — asin 1))

= Average over the distribution...

A2
% = A?Bsin® r'? = —(cos® 1) + a* sin® ¢ — a'sin 2¢)

p
_ 2y _ (A7) _ 1
(a%) = §<A2>ﬂ (x") = 25 (1+a%) = §<A2>7
and . xx = A2(% sin 210 — o sin® 1))
ey = —5(A%a
From which the average of all particle emittances will be m(A?) = 21/ (22) (2/2) — (za')?

and the “normalized rms emittance” can be defined as:

en = T(By)V/ (22){27?) — (za’)?
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""E. TRANSPORT of Beam Moments ()

(A%); then,

DO | —

= For simplicity, define ¢ =

= Note that: 27 ( —ggv _g?a ) = ( :<<f;%l>> <<:Z’>> )

= Correlation Matrix:

Here, M is from point 1 to
point 2 along the beam line
(same M as previously)
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# Summary f

= S0, can look at propagation of amplitude function through beam line
given matrices of individual elements. Beam size at a particular location

determined by
xrms \/ﬂ EN/T‘_ 57)

= Or, given an initial particle distribution, can look at propagation of second
moments (of position, angle) given the same element matrices, and
hence the propagation of the beam size, /{z?)(

= Either way, can separate out the inherent properties of the beam
distribution from the optical properties of the hardware arrangement
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Effects due to Momentum Distribution @

S

= Beam will have a distribution in momentum space

= Trajectories of individual particles will spread out when pass through
magnetic fields

« B s constant; thus AB/6 ~ - Ap/p
« path is also altered by the gradient fields...

= These trajectories are described by the Dispersion Function:

D(s) = Axc,o.(s)/(Ap/p)
= Consequently, affects beam size:

(z%) = enB(s)/(myv/e) + D(s)*((Ap/p)°)

MICHIGAN STATE
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Dispersion Suppressor
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# Chromaticity @)

» Focusing effects from the magnets will also depend upon momentum:
2"+ K(s,p)r=0 K =e(0By(s)/0z)/p

= To give all particles the similar optics, regardless of momentum, need a
“gradient” which depends upon momentum. Orbits spread out
horizontally (or vertically) due to dispersion, can use a sextupole field:

° which giveS 8By/875 — Bl B"D(Ap/p)

l.e., a field gradient which depends upon momentum

= Chromatic aberrations are the variation of optics with momentum;
chromaticity is the variation of tune with momentum. We use sextupole
magnets to control/adjust; but, now introduces nonlinear fields ...

e can create a transverse dynamic aperture!

MICHIGAN STATE
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# Collider Accelerator Lattice @

= can build up out of modules

bend, w/
FODO cells

» check for overall stability -- x/y

in —> ~—— out

= meets all requirements of the program
* Energy --> circumference, fields, etc.
» spot size at interaction point: 8 minimized, D=0

e etc...
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UNIVERSITY

M. Syphers  HCPSS2012 Aug 2012 81



-
L. 3

1+ L/2F
Bmaa: main = 2F /
’ 1+ L/2F

Ex: Tevatron Cell

FODO Cells (arcs)

AB = F28/F

B(s) = Bo — 208 + Y08°

J
0 l

S

through a thin quad

between quadrupoles

120 | | |

100

80

40

Binin = 2(25 m)1/0.4/1.6 = 25 m
v~ 100 x 1.2/271 ~ 20

sin(p/2) = L/2F = 0.6 — p ~ 1.2(69°)
Brmaz = 2(25 m)4/1.6/0.4 = 100 m 20 |
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Dispersion Suppression

phase advance = 90° per cell

120
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100
I

Lattice Functions
60 80
|
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L. 2

Long Straight Section

* a “matched insertion” | H H Hnmﬂ] “ ﬂ HI;I II!H & | H ﬂ
| U lwrm % |
that propagates the 500 LHC V6.5 Beam1 IR4 450GeV Injection (pp) %Crossing Bumps(IP1=100% IP5=100°/% éPR@;JzO(
amplitude functions ¢ T .~ « ., o = [ = G
from their FODO < woy | SO
values, through the £ s ©
new region, and
reproduces them on |
the other side
= Here, we see an LHC ™
section used for beam  =-
scraping
| 9.Ié\t/lomentum oifset: 0.00?’!/i 00 o . e
s (m) [*10™( 3)]
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LHC high
luminosity
IR
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Interaction Region
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Momentum offset = 0.00 %
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St

‘th Low-Beta “Squeeze” @)
= As beam is larger at injection than it is at collision energy, do not want a

“low-beta” condition during injection process

= Thus, the triplet and other nearby quadrupoles are tuned to adjust beam
size at the focus; the beam is “squeezed” near the end of the sequence

4 )
Beam Shape through Final Triplets

2]

Beam Size (rms, mm)

-

Tevatron
Example

Distance from Interaciion Point (m)

\- J

e o

NSCL FRIB
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* make up a synchrotron out
of FODO cells for bending,
a few matched straight

sections for special
puUrposes...

MICHIGAN STATE
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-';""_- Put it all Together

* make up a synchrotron out
of FODO cells for bending,
a few matched straight
sections for special
puUrposes...

°e
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# Corrections and Adjustments

= Correction/adjustment systems required for fine control of accelerator:
* correct for misalignment, construction errors, drift, etc.
 adjust operational conditions, tune up

= Use smaller magnetic elements for “fine tuning” of accelerator
* dipole steering magnets for orbit/trajectory adjustment
« quadrupole correctors for tune adjustment
» sextupole magnets for chromaticity adjustment

= Typically, place correctors and

iInstrumentation near the major

quadrupole magnets -- “corrector

package”

 control steering, tunes,
chromaticity, etc.

* monitor beam position (in
particular), intensity, losses, etc.
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Linear Distortions

Orbit distortion due to
single dipole field error

74

\ // § /
INA NN

N\ /s N \

N / :”‘\ / sl 7o\

SSHANKAN AASTTANEN -

A N N ./ AN N A, N AN 3 N

I P e S RO S N N PO SRS A S S Os SR OSSR ORI 2o

R S SISO DRSO DR ORI DRI SLIROC SSHLIC ORI L

4 R AN e g T A T A A S S e ol teAa e Y _:;":‘;.“ T, e

e 3 PN NS YR - AR Y 7 LA PR S SR
7 NN NNRENNARR

Envelope Error (Beta-beat) due ~ 7]
to gradient error

gradient error also generates a
shift in the betatron tunes... Y -
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# Resonances and Tune Space

= Error fields are encountered repeatedly each revolution -- can be
resonant with tune

* repeated encounter with a steering (dipole) error produces an orbit distortion:

» thus, avoid integer tunes ( 1 J
Ax ~

SIN 7TV

» repeated encounter with a focusing (quad) error produces distortion of
amplitude fcn:

» thus, avoid half-integer tunes

1
[Aﬁ/ﬁ N sin QWVJ
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= Phase space w/ sextupole field present (B, ~ x?)

* tune dependent:

* “dynamic aperture”

» Thus, avoid tune values:

. K, ki2, ki3, ...
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Nonlinear Resonances
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# Tune Spread

= due to momentum -- chromaticity
« “natural” chromaticity due to particle rigidity

« also, field errors in magnets ~ x? in the
presence of Dispersion

position [mm]

= due to nonlinear fields

 field terms ~ x2, x3, etc.

position [mm]

0 2000 4000 6000 8000

._
W

= -->"decoherence” of beam position signal

—
o

o
n

0.0 mmamii]

position [mm]
|
©
()]

I
—_
o

|
—_
n

number of revolutions
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“-'.‘h Tune Diagram
= Always “error fields” in the real accelerator

= Coupled motion also generates resonances (sum/difference
resonances)

* in general, should avoid: mvuv, tnv, =k
g x Y

avold ALL rational tunes???
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L,
L 3
Through order

K =2
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Tune Diagram
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Tune Diagram

Through order = < _
k=5
S I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
hor tune
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# Break till Day Three... &)

= Tomorrow:
* beam-beam interaction
* energy deposition and synchrotron radiation
« diffusion and emittance growth
* hour glass and crossing angles
* luminosity optimization
* future directions
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