Please read these instructions before posting any event on Fermilab Indico

The FERMI(FNAL) network authorization method will be removed on Tuesday, Feb 4th at 5PM CST. See news for more details.

NF01 Topical Workshop No. 4

US/Central
https://bluejeans.com/604363806

https://bluejeans.com/604363806

Registration
Participants

October 2, 2020: NF01 Workshop #3 on the importance of precision, DUNE, and T2HK.

Introduction:

Precision (Petcov):
- Determining neutrino parameters is important, including CP, mass ordering, mass scale
- Lots of BSM models connect with oscillations
- CP violation in Dirac phase could be large given data, Majorana phases are hard to measure
- Evidence for NO has decreased with 2020 data
- The three mixing angles are a challenge to explain theoretically
- Non-abelian discrete symmetries are popular explanations
- Perhaps there are perturbative corrections to tribimaximal
- Base symmetries predict theta13=0, theta23=45, and differ on theta12.
- In different models there are relationships among the different mixing angles including delta
- DUNE and T2HK have about 2-3sig sensitivity for discriminating different models
- Useful precision: s12sq=.7%, s13sq=3%, s23sq=3%, delta=10-12deg at 3pi/2
Questions:
- Kevin Kelly: There has been a lot of focus on the mixing angles. What about the masses? Petcov: mixing angles are harder to explain than the masses. Kevin: What about quasi-degenerate vs hierarchy? Petcov: Everything is possible.

DUNE (Worcester):
- Goals to measure CP, mixing angles, mass ordering in one experiment as well as rare processes and low energy physics.
- Beam will be upgraded to 1.2 MW upgradeable to 2.4 and is broadband with three focusing horns
- Near detector: constrain systematics for oscillation analysis (plus cross sections and BSM). Contains LAr, GAr, and tracker. The first two move off-axis 30m for PRISM.
- Far detector 40kt fiducial of LArTPC. Some of the design is to be determined. ''It's huge.''
- Beyond oscillations: SN burst, BSM processes in oscillations, in the detector, and in the near detector.
- New sensitivity analyses include a very serious treatment of systematics at all stages including unknown unknowns.
- Precision on deltaCP: After 7yrs (staged) the precision will be 15-25deg (depending on true value), after 15yrs it will be  7-17deg.
- Precision on theta13 is competitive with current global fit on theta13.
- Discovery for mass ordering is well over 5sig, possible after 1-3yrs.
- Discovery for CPV (ruling out CPC) could be 5sig after 7yrs for some values, for 15yrs many values
- theta23 octant: more sensitivity for lower octant, considerably improved theta23 precision over current measurements
- Unknown unknowns: compare generator uncertainties: ND could identify generator uncertainties
- PRISM further identifies cross section uncertainties
- Combining ND and FD one can also constrain BSM e.g. sterile mu->e appearance
- Construction: FD construction is underway. ND planning is underway. FD physics data expected late 2020s. Details will be finalized in 2021.

T2HK (Nadadaira):
- HK construction started 2019, operation to start mid 2027
- Beam upgrade to 1.3 MW by 2026
- 2.7e22 POT in 10yrs is expected
- 1:3 nu:nubar beam ratio is assumed, O(2k) appearance events
- Systematics start with T2K18. Improved with stats and ND280 upgrade.
- Good sensitivity to delta, comparable to DUNE.
- Okay mass ordering sensitivity, 4-6sig in 10yrs.
- Good sensitivity for the theta23 octant
- nue/nuebar cross uncertainty is very important
Questions:
- Denton: sensitivities w/wo mass ordering prior? Friend: nearly all plots assume mass ordering prior

Discussion:
Worcester: 1.2->2.4 MW upgrade is important
Kelly: Early stages of running to get mass ordering ASAP
Joint fits should be a priority in the Snowmass report
Megan: T2HK should prioritize unknown unknowns
Petcov: Not sure if delta sensitivities are good enough, combined could be

There are minutes attached to this event. Show them.