Please read these instructions before posting any event on Fermilab Indico
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Kirov
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
US/Central
English (United Kingdom)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
SIST Final Talks 2011
Tuesday, 9 August 2011 -
08:30
Monday, 8 August 2011
Tuesday, 9 August 2011
08:30
Welcome
Welcome
08:30 - 08:40
Room: 1WEST
08:40
Gas Transport in the Mu2e Detector Straws
-
Blake Powell
(Morehouse College, SIST Intern)
Gas Transport in the Mu2e Detector Straws
Blake Powell
(Morehouse College, SIST Intern)
08:40 - 09:00
Room: 1WEST
The Mu2e transverse tracker will utilize over 20,000 Mylar straws of varying lengths connected in parallel to gas manifolds. Impurities in the Ar/CO2 supply could cause unwanted chemical reactions within the straw to take place, potentially damaging the sense wire and locally reducing the gain of the straw. By ensuring that a constant fresh supply of gas traverses the straw, these reactions can be impeded. If the system were dominated by flow, the resistance experienced by the gas would be proportional to the length of the straw, which may cause the flow in longer straws to be severely inhibited. Much of the summer was spent determining whether flow or diffusion was the dominant method for gas transportation through the straw, and whether the system could operate effectively in parallel.
09:00
Search for Standard Model Higgs Boson in the WH->WWW->lv.jj.jj Channel
-
Anthony Podkowa
(Summer Internships in Science and Technology)
Search for Standard Model Higgs Boson in the WH->WWW->lv.jj.jj Channel
Anthony Podkowa
(Summer Internships in Science and Technology)
09:00 - 09:20
Room: 1WEST
During the summer of 2011, work began on the intermediary stages of an analysis of the high-mass Standard Model Higgs boson in associated production with a W boson. This channel, WH->WWW->lv.jj.jj, is of particular interest since it has not yet been investigated by any other analysis group. Continued efforts are being focused on finalizing the results of the data and Monte Carlo simulations for this analysis.
09:20
Calorimetry for future Lepton Colliders
-
Edgar Nandayapa
(OSU)
Calorimetry for future Lepton Colliders
Edgar Nandayapa
(OSU)
09:20 - 09:40
Room: 1WEST
New projects for lepton colliders are developing around the world. The necessity for building capable detectors for these acceleratos is important. This project studies the advantages and limitations of a dual readout calorimeter when obtaining data from a linear accelerator.
09:40
Break
Break
09:40 - 09:50
Room: 1WEST
09:50
Developing high-current, mechanically reinforced BSCCO 2212 cable: a survey of compatible materials
-
Alexander Matta
(Virginia Tech)
Developing high-current, mechanically reinforced BSCCO 2212 cable: a survey of compatible materials
Alexander Matta
(Virginia Tech)
09:50 - 10:10
Room: 1WEST
BSCCO 2212, a high temperature superconductor currently under extensive experimentation at Fermilab has the potential to be used in next generation accelerator magnets which would operate in the field range of 20 - 50T. However BSCCO 2212’s strain sensitivity is a considerable problem when operating in these high magnetic fields. In order to solve this problem alloy wire reinforcement to be used in high current multi-strand cables is being considered. These alloy wires have to fulfill two requirements, they must be mechanically strong, and they must be chemically compatible with 2212 wire. I performed tensile testing, and chemical compatibility testing on 5 different alloys, Inconel 600/625/X750, nickel chromium, and Kanthal A-1. Testing has indicated that Inconel X750 and Kanthal A-1 are possible candidates for 2212 reinforcement. Testing has also shown that titanium oxide and aluminum oxide coatings may be effective in reducing chemical interaction between 2212 wire and alloy wire.
10:10
FPGA beam loss monitor system for the SRF facility
-
Diana Paola Perea Palacios
(Benedict College)
FPGA beam loss monitor system for the SRF facility
Diana Paola Perea Palacios
(Benedict College)
10:10 - 10:30
Room: 1WEST
A Field Programmable Gate Array (FPGA)-based Time-to-Digital Converter (TDC) is being developed for use with cryogenic ionization chamber beam loss monitors which have been proposed for installation inside the cryostats at the Superconducting Radio-Frequency (SRF) beam test facility at Fermilab. The scheme employs an Altera Cyclone III FPGA and He-ionization chambers with recycling integrators as dose rate monitors. The time intervals between the pulses out from the dose rate monitors are measured with high timing resolution (> 10 bits) using this TDC method. This provides a more accurate measure of the current than was previously possible. The FPGA was initially programmed with a single channel output for test purposes; however several additional channels are required for the final phase. This project has extended the new design to handle multiple channel output up to 8 channels with a timing resolution of 1 ns(nano-second). This project discusses the design and test results that we have obtained so far.
10:30
Performance Studies of a NOvA 53 MHz RF Cavity
-
Frederic Jones
(Stony Brook University)
Performance Studies of a NOvA 53 MHz RF Cavity
Frederic Jones
(Stony Brook University)
10:30 - 10:50
Room: 1WEST
Three new RF cavities are required to perform multi-batch slip stacking in the Recycler Ring to increase the proton intensity of the NuMI beamline for the NOvA project to study muon to electron neutrino oscillations. Two RF cavities will operate at a 1200 Hz difference in frequency, and one will be used as a spare. The cavities are made from high conductivity copper (OFHC) and operate in the quarter-wavelength transverse electromagnetic mode with a length slightly reduced by the gap capacitance at the accelerating voltage end. In this study, we present results from low power measurements of one of these cavities. We used coaxial cables hooked-up to a Network Analyzer to transmit power into its structure and measure the resonant modes. After adjusting the length of the cavity, the fundamental mode which is used to accelerate the beam during slip stacking, was measured very close to the desired operational value of 52.809 MHz. The higher order modes of the cavity were also identified, and prototype dampers were constructed to test their ability to suppress them. To determine the frequency tuning range of the cavity, tuners were also developed. These RF devices were able to optimize the cavity’s performance.
10:50
Break
Break
10:50 - 11:00
Room: 1WEST
11:00
Search for the Higgs Boson in the WH->lvbb and WH->WWW->lv.jj.jj Channels
-
Stephanie Hamilton
(Michigan State University)
Search for the Higgs Boson in the WH->lvbb and WH->WWW->lv.jj.jj Channels
Stephanie Hamilton
(Michigan State University)
11:00 - 11:20
Room: 1WEST
Throughout the summer of 2011, work continued on the analysis of the associated production of the Higgs boson. Our particular analysis was the WH → lνbb decay channel. This channel has the highest branching ratio of the low-mass Higgs decay channels and thus is one of the most sensitive channels to analyze, resulting in a solid framework and a good foundation. Work was also done on the WH → WWW → lνjjjj decay channel. This channel is unique within DØ because there are only a few people working on it, all whom are summer students. This paper explains ongoing efforts to process data and Monte Carlo (MC) samples, model data correctly, and utilize the output of multivariate training to effectively distinguish between signal and background events and perform a search for the Higgs Boson. It also discusses new variables that were added to the search and how they impacted the overall analysis.
11:20
Simulation of Quench in an 11 T Dipole Magnet
-
Charles Orozco
(University of Illinois at Urbana-Champaign)
Simulation of Quench in an 11 T Dipole Magnet
Charles Orozco
(University of Illinois at Urbana-Champaign)
11:20 - 11:40
Room: 1WEST
On 19 September 2008, approximately 100 of CERN’s dipole magnets quenched due to faulty electrical systems. This problem resulted in rapid heating of the magnets and the loss of 6 tons of liquid helium as well as the destruction of 53 dipole magnets, which had to be replaced at a cost of $21,000,000. This in turn delayed the LHC from accelerating particles to “high energy” until November 2009, more than a year later. To avoid such a catastrophe ever happening again, it was decided that each magnet would be fitted with a heater and a dump resistor to facilitate the quick and safe shutdown of the magnet. To that end, I was commissioned to update a simplified 3D model of the dipole magnets with new geometry and retool the analysis performed on the old model in 2003 to work with the geometry of CERN’s dipole magnets. The analysis was performed using ANSYS 7.0 in 2003 and 13.0 in 2011. Unfortunately, I was unable to perform the analysis in full as the 3D analysis takes 10 days to run on the computer that was available to me at the time of project completion. I was, however, able to successfully run a 2D simulation, the results of which lie below.
11:40
Group Photo
Group Photo
11:40 - 12:00
Room: 1WEST
12:00
Lunch
Lunch
12:00 - 13:00
Room: 1WEST
13:00
Design and Implementation of a Motion Control Program to Assess the Consistency of the Flying Wire’s Feedthrough and Coupling
-
Kayla Malone
(Alabama A&M University)
Design and Implementation of a Motion Control Program to Assess the Consistency of the Flying Wire’s Feedthrough and Coupling
Kayla Malone
(Alabama A&M University)
13:00 - 13:20
Room: 1WEST
The reliability of the hi-flex bellow coupling and the magnetic feedthrough utilized in the Flying Wire systems are two prime components that require research to increase dependability. The current design of the Flying Wire system has an issue with the coupling and the feedthrough being overwhelmed from prolonged use. In order to improve the dependability of these two components, a motion control system was designed to test these specific components. Using a test setup, a motion control program was written to analyze the consistency of the coupling and feedthrough. The motion control program was created by programming the Elmo Solo Whistle digital servo drive, which stores and executes the designed program. The system had to be tuned so that the Elmo Solo Whistle digital servo drive can provide the most suitable parameters while also reducing error. Once the setup has been tuned, the system operated continually for about 5 days to gather data about the coupling and feedthrough. This paper reviews the hardware and software format, proficiencies, and the results from the test system.
13:20
Bead-Pull RF Measurement System
-
Jackline Koech
(University of Massachusetts, Amherst)
Bead-Pull RF Measurement System
Jackline Koech
(University of Massachusetts, Amherst)
13:20 - 13:40
Room: 1WEST
Bead-Pull is a most commonly used Radio Frequency (RF) field measurement technique. RF field measurements play an important role in qualifying any RF cavity. They are used in evaluating the field distribution inside a resonant structure and in tuning them to obtain the required field flatness. The Bead-Pull system consists of a small dielectric or metallic bead being pulled through a cavity while the electric field measurement in the cavities is done. A step motor and a pulley system guide the motion of the bead through the cavity while a Network Analyzer is used to take the RF measurements. A program is developed in National Instruments' Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) to control the hardware of the Bead-Pull system. The software will coordinate the step motor's movement, acquire data via the Network Analyzer and process the data as required.
13:40
Web Application for the Dual Readout Calorimeter Database
-
Jennifer Karkoska
(University of Rochester)
Web Application for the Dual Readout Calorimeter Database
Jennifer Karkoska
(University of Rochester)
13:40 - 14:00
Room: 1WEST
The Dual Readout Calorimeter Project hopes to find the best materials to make a Dual Readout Calorimeter, which measures the energy response to both Cherenkov and scintillation light, as accurate as possible. All of the data and plots from the simulations are stored in the Dual Readout Calorimeter Image Database, where every plot can be described by a category and various tag names and values. A Web application allows users to easily find, view, and analyze these plots. Every time a client makes a request, the Web application establishes a connection with the Structured Query Language (SQL) database, which uses prepared statements to quickly return information stored in the database. All of the information the client sees is displayed using JavaServer Pages (JSP), a language based on a combination of Java and HTML. The Web page also incorporates the JavaScript language to increase functionality and user-interactivity.
14:00
Laser Development for the New Muon Lab
-
Courtney Clarke
(Fermilab SIST)
Laser Development for the New Muon Lab
Courtney Clarke
(Fermilab SIST)
14:00 - 14:20
Room: 1WEST
This research conducted regards the development of upgrades on two projects that will be used in the New Muon Lab. The projects include the characterization of the Picosecond Pulsed Fiber Laser as the seed laser for the RF gun, and the development of the Diode Pumped chassis as the upgraded laser pump source for the two-pass and multi-pass amplifiers. The results of tests, the issues that arose, and the solutions to these issues will be covered for future use or consideration in NML.