Joel Risner
(Oak Ridge National Laboratory)
29/04/2014, 08:55
Shielding analyses for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory pose significant computational challenges, including highly anisotropic high-energy sources, a combination of deep penetration shielding and an unshielded beamline, and a desire to obtain well-converged ‘nearly global’ solutions for mapping of predicted radiation fields. The majority of these analyses...
Lali Tchelidze
(European Spallation Source)
29/04/2014, 09:20
European Spallation Source (ESS) will consist of a proton linear accelerator that will accelerate protons up to 2 GeV, a target and a number of neutron instruments. An overall preliminary assessment of the linac shielding is completed. A simplified 3D model is constructed and used for necessary shielding evaluations using MARS Monte Carlo code. Model consists of a linac tunnel and an earth...
Riccardo Bevilacqua
(European Spallation Source)
29/04/2014, 09:45
The European Spallation Source (ESS) is a collaboration of 17 European partner countries established to project, build and operate the world’s most powerful neutron source in Lund, Sweden. The construction of the facility will start in the course of 2014, and ESS is expected to produce the first neutrons in 2019.
Monte Carlo calculations are required to design the appropriate shielding needed...
Pedro Vaz
(IST - Radiological Protection and Safety Group)
29/04/2014, 10:30
Over the last decade, the importance of evolving towards the construction of Radioactive Ion Beam (RIB) facilities gained considerable interest and support from the Nuclear Physics community (at large). Projects like the EURISOL (EURopean Isotope Separation On-Line Radioactive Ion Beam) Design Study paved the way to the investigation of scientific, technological and engineering studies of the...
Bradley Micklich
(Argonne National Laboratory)
29/04/2014, 11:20
Argonne’s ATLAS accelerator facility is a national user facility for low-energy nuclear physics. Ions from protons to uranium are produced by one of two ECR sources, accelerated in the booster linac and the main ATLAS linac, and then directed to one of three experimental areas. ATLAS has just finished upgrading the booster linac to provide a significant increase in current. This paper presents...
Hee-seock LEE
(Pohang Accelerator Laboratory)
29/04/2014, 11:45
A shielding analysis was carried out for 90 degrees bending section of heavy ion accelerator of RISP (Rare Isotope Science Project). A projectile beam is 18.5 MeV/u, 9.5 pμA U-238 with charges of 33+(50%) and 34+(50%). A thin carbon stripper is placed to generate higher positive charged U beam at the front of the 90 degrees bending section. The bending section consists of many quadrupole...