We continue to review all events currently planned for the next sixty days and organizers will be notified if their event must be canceled, postponed, or held remotely. Please, check back on Indico during this time for updates regarding your meeting specifics.
As DOE O 142.3A, Unclassified Foreign Visits and Assignments Program (FVA) applies not only to physical access to DOE sites, technologies, and equipment, but also information, all remote events hosted by Fermilab must comply with FVA requirements. This includes participant registration and agenda review. Please contact Melissa Ormond, FVA Manager, with any questions.

Indico search will be reestablished in the next version upgrade of the software: https://getindico.io/roadmap/


This search is only for public events. Restricted events are not available.


10-11 June 2019
Fermi National Accelerator Laboratory
US/Central timezone

LArIAT in 10 minutes

Jun 10, 2019, 4:30 PM
One West (Fermi National Accelerator Laboratory)

One West

Fermi National Accelerator Laboratory


Vincent Basque (University of Manchester)


Liquid Argon Time Projection Chambers (LArTPCs) are currently being used extensively for neutrino physics due to their excellent capabilities in performing particle identification, and precise 3D and calorimetric energy reconstruction. The Liquid Argon In A Test Beam (LArIAT) experiment was located at the Test Beam Facility where it was exposed to a known charged particle beam. The capability of understanding and knowing the charged particle beam is a crucial aspect of LArIAT that allows it to improve on LArTPCs advantages to perform state of the art analyses. This made LArIAT an excellent test-bed to perform cross-section measurements with different charged particles as well as performing R&D studies for future large LArTPCs such as the Short-Baseline Near Detector (SBND) and the Deep Underground Neutrino Experiment (DUNE). This talk will give an overview of the LArIAT detector as well as provide a highlight of recent results from on-going analyses.

Primary author

Vincent Basque (University of Manchester)

Presentation Materials