The SpinQuest experiment (E1039) will measure the azimuthal asymmetry of dimuon pair production via scattering of unpolarized protons from transversely polarized NH3 and ND3 targets. The asymmetry will be measured for both Drell-Yan scattering and J/psi production. By measuring the asymmetry for the Drell-Yan process, it is possible to extract the Sivers Function for the light anti-quarks in...
Estimates are presented for the SpinQuest experiment to extract the Transverse Single Spin Asymmetry (TSSA) in $J/\psi$ production as a function of the $J/\psi$ transverse momentum ($p_{T}$) and Feynman-$x$ ($x_{F}$). SpinQuest is a fixed-target Drell-Yan experiment at Fermilab, using an unpolarized 120 GeV proton beam incident on a polarized solid ammonia target. Such measurements will allow...
Searching for light and weakly-coupled dark sector particles is of vital importance in worldwide dark matter searches. Long-lived dark mediators can be generated through interactions between proton beam and fixed target at the SpinQuest experiment (E1039) at Fermilab. These hypothetical long-lived particles will travel several meters before decaying into SM particles and can be tracked by the...
Various models based on quantum chromodynamics (QCD) have not yet been able to fully explain the production mechanism of heavy quark bound states. Most recent models such as the Color Evaporation Model (CEM) and Non-Relativistic QCD (NRQCD) successfully explain the higher transverse momentum spectra while none of them is able properly explain the spin alignment measured by various experiments....
We report on progress towards a measurement of the angular distributions of Drell-Yan dimuons produced at the SeaQuest/E906 Fermilab experiment, using the 120 GeV proton beam on a Fe target. The beam dump upstream of the dimuon spectrometer, which serves as the iron target, is expected to provide a very large statistical significance for this measurement. To extract the Drell-Yan signal, a...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino oscillation experiment consisting of a near detector at Fermilab and a far detector located 1,480 meters underground and 1285 km away in Lead, South Dakota. The far detector will consist of four modules, at least three of which will be Liquid Argon Time Projection Chambers (TPC), intersecting the neutrino beam...
The DUNE ND-LAr consortium is conducting an extensive prototyping campaign for the Liquid Argon
TPC for the DUNE Near Detector. The DUNE ND-LAr detector consists of 35 individual modules with
a total fiducial mass of 50 tons. As part of the prototyping campaign a demonstrator detector holding
2x2 modules is placed in the NuMI beam at Fermi National Accelerator Laboratory (Fermilab). Each...
The Deep Underground Neutrino Experiment (DUNE) is a long baseline neutrino experiment using liquid argon detectors to study neutrino oscillations, proton decay, and other phenomena. The single-phase ProtoDUNE detector is a prototype of the DUNE far detector and is located in a charged particle test beam at CERN. It is critical to have accurate momentum estimation of charged particles for...
The Deep Underground Neutrino Experiment (DUNE) is an international project that will study neutrinos and search for phenomena predicted by theories Beyond the Standard Model (BSM). DUNE will use a 70-kton liquid argon time projection chamber (LArTPC) located more than a kilometer underground. The excellent imaging capabilities of the LArTPC technology, in addition to the large size and...
Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gd-doped water Cherenkov detector located on the Booster Neutrino Beam (BNB) at Fermilab and designed to measure the neutron multiplicity of neutrino-nucleus interactions in their final state. In long-baseline oscillation experiments, signal-background separation and a better understanding of cross-section uncertainty are...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is the first high energy physics experiment to use LAPPDs. The experiment uses Gd-loaded water to study for neutrino interactions and produce a measurement of the neutron yield out of neutrino-nucleus interactions. LAPPDs allow us to better localize the interaction point of the neutrinos. But what exactly are LAPPDs, besides a...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gd-doped water Cherenkov neutrino detector. It aims both to determine the neutron multiplicity from neutrino-nucleus interactions in water and provide a staging ground for new technologies relevant to the field. To this end, several analysis methods have been developed. Interaction position and subsequent track...
The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in the construction phase and is anticipated to begin operation in 2023. SBND is characterized by superb imaging...
The upcoming Short-Baseline Near Detector (SBND) experiment will play a crucial role in the Short-Baseline Neutrino (SBN) Program’s sterile neutrino search as the near detector, as well as contribute significantly to the understanding of neutrino-nucleus interactions. The high event statistics of over a million neutrino events per year, together with the reconstruction capabilities of liquid...
The ICARUS experiment is now commissioned and taking physics data. ICARUS employs a 760-ton (T600) LArTPC detector. In this talk, I will summarize the status and plans of the ICARUS experiment. At this time neutrino events from both the Booster Neutrino Beam (BNB) and the NuMI off-axis beam have been observed and recorded. ICARUS is positioned to search for evidence of sterile neutrinos as...
The ICARUS neutrino detector is a 760 ton Liquid Argon Time Projection Chamber (LArTPC) operating as the far detector in the Short Baseline Neutrino (SBN) Program based at Fermilab. As this detector will operate at shallow depth, it is exposed to a high flux of cosmic rays that could fake a neutrino interaction. The installation of a 3-meter-thick concrete overburden and a Cosmic Ray Tagging...
The ICARUS detector will search for neutrino oscillations involving eV-scale sterile neutrinos using the Booster Neutrino Beam at Fermilab. These oscillations may be observed as muon-neutrino ($\nu_\mu$) disappearance, which will require a high purity sample of $\nu_\mu$ events in the detector with sufficient statistics to maintain sensitivity to $\nu_\mu$ disappearance. Additionally, the...
The high intensity of POT and excellent particle identification and reconstruction capabilities of LArTPCs make experiments within the SBN program sensitive to a multitude of BSM models. One such example is the demonstrated sensitivity of the program’s detectors to dilepton pairs originating from exotic Higgs Portal Scalar decays. Columnated showers that come from scalar decays to...
The Muon g-2 experiment at Fermilab measures the magnetic moment of the muon by studying the behavior of muons as they orbit in a magnetic storage ring. Measuring muon precession frequencies relative to magnetic field strength and correcting for a wide array of factors lets us determine the magnetic moment anomaly a_μ = (g-2)/2 to very high precision. The motivation behind this effort is to...
The Mu2e experiment will search for a Standard Model violating rate of neutrinoless conversion of a muon into an electron in the presence of an aluminum nucleus. Observation of this charged-lepton flavor-violating process would be an unambiguous sign of New Physics. Mu2e aims to improve upon previous searches by four orders of magnitude. This requires the world's highest-intensity muon beam, a...
The Mu2e experiment will search for the CLFV neutrinoless coherent conversion of muon to electron, in the field of a nucleus. A custom Event Display has been developed using [TEve][1], a ROOT based 3-D event visualisation framework. Event displays are crucial for monitoring and debugging during live data taking as well as for public outreach. A custom GUI allows event selection and navigation....
The Muon-to-Electron Conversion Experiment (Mu2e) at Fermilab will search for the charged-lepton flavor-violating process of a neutrino-less conversion of a muon to electron in the presence of a nucleus. It will do so with an expected sensitivity that improves upon current limits of four orders of magnitude. Such sensitivity will require less than one expected background event over the...
MicroBooNE, a short-baseline neutrino experiment, sits on-axis in the Booster Neutrino Beamline at Fermilab where it is exposed to neutrinos with $\langle E_\nu \rangle$ ~ 0.8 GeV. Since this energy range is highly relevant to the Short Baseline Neutrino and Deep Underground Neutrino Experiment programs, cross sections measured by MicroBooNE will have implications on their searches for...
An accurate determination of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) and the Long-Baseline Neutrino Facility (LBNF) beamlines is essential to the neutrino oscillation and neutrino interaction measurements for the Fermilab neutrino experiments, such as MINERvA, NOvA, and the upcoming DUNE. In the current flux predictions, we use the Package to Predict the FluX...
The MINERvA (Main INjector ExpeRiment for v-A scattering) experiment was designed to perform high-statistics precision studies of neutrino-nucleus scattering in the GeV regime on various nuclear targets using the high-intensity NuMI beam at Fermilab. The experiment recorded neutrino and antineutrino scattering data from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3.5...
For a better understanding of neutrino properties, we require precision measurements of the oscillation parameters. Presently the systematic uncertainty on these parameters can be as large 25-30% because of the lack of understanding of neutrino-nucleon and neutrino-nucleus cross sections. For future high precision measurements we will need to reduce this uncertainty down to 2-3%. MINER𝜈A is a...
NOvA, the NuMI Off-Axis $\nu_e$ Appearance experiment, uses a predominantly muon neutrino or anti-neutrino beam to study neutrino oscillations. NOvA is composed of two functionally equivalent, liquid scintillator detectors. A 300 ton near detector is located at Fermilab 1 km away from the beam target. A 14 kt far detector is located in Ash River, Minnesota, separated from the near detector by...
Charged Current coherent neutrino-nucleus pion production is characterized by small momentum transferred to the nucleus, which is left in its ground state. In spite of the relatively large uncertainties on the production cross-section, coherent production of mesons by neutrinos represents an important process, as it can shed light on the structure of the weak current and can also constitute a...
NO$\nu$A is a long-baseline accelerator neutrino experiment at Fermilab that aims at precision neutrino oscillation analyses and cross-section measurements. Large uncertainties on the absolute neutrino flux affect both of these measurements. Measuring neutrino-electron elastic scattering provides an in-situ constraint on the absolute neutrino flux. In this analysis the signal is a single, very...
The Barrel Timing Layer (BTL) is a central component of the MIP Timing Detector (MTD) of the Compact Muon Solenoid (CMS). Precision timing information from this detector is necessary for the challenges of High-Luminosity LHC operations. These upgrades require an increase in the cryogenic capacity provided to the BTL system. Prototype cooling plates have been in development and have been tested...
SuperCDMS is a dark matter (DM) search experiment under construction inside the SNOLAB facility (Lively, Canada). The experiment will employ two types of germanium- and silicon-based cryogenic calorimetric detectors to detect ionization and phonon signals from DM particle direct interactions. The detectors will be operated in a new radiopure cryostat and shield. In this talk, I will present...
The Northwestern Experimental Underground Site (NEXUS), located in the MINOS cavern at Fermilab, is a user facility for development and calibration of cryogenic detectors. The heart of NEXUS is a dilution refrigerator with a 10 mK base temperature, protected from radiogenic backgrounds by a moveable lead shield and 100 meters of rock overburden. The fridge is outfitted with cabling to support...
The Super Cryogenic Dark Matter Search (SuperCDMS) employs silicon and germanium calorimeters equipped with transition edge sensors to directly search for interactions from dark matter (DM). New 1-gram SuperCDMS HVeV (high-voltage with eV resolution) devices exhibit single-charge sensitivity, making it possible to search for sub-GeV-mass DM candidates such as electron-recoiling DM, dark...
Superconducting qubits are of interest for the development of quantum computers and for quantum sensing in experiments such as dark matter searches. For both applications, it is crucial to understand qubit errors and the resulting performance limitations. Recent studies of charge noise and relaxation errors in a multiqubit device found significant spatial correlation of errors across the...
The axion is a very well-motivated Dark Matter candidate in the $\mu$eV mass range. Its discovery would also solve the longstanding question why the electric dipole moment of the neutron is vanishingly small, $< 10^{-26} e$cm, so far consistent with zero. ADMX searches for axion dark matter via its resonant conversion to photons inside a strong (7.6T) magnetic field using RF cavities. In this...
The DarkSide program is a direct WIMP dark matter search experiment using liquid argon time projection chamber (LAr-TPC). Its primary detector, DarkSide-50, run since 2015 a 50-kg-active-mass LAr-TPC filled with low radioactivity argon from underground source and produced world-class results for both the low mass (M_WIMP < 10 GeV/c2) and high mass (> 100 GeV/c2) WIMP search. The next stage of...
In recent years, the demand for experimental data in cosmology, direct searches for dark matter and neutrino physics has highlighted the need to explore very low energy interactions. While Charge-Coupled Devices have proven their worth in a wide variety of fields, its readout noise has been the main limitation when using these detectors to measure small signals. The R&D done at Fermilab...
Pulsars - spinning neutron stars that are magnetized – are likely the leading source which could explain the large excess in the observed positron flux present in data measurements from the AMS-01, HEAT, and PAMELA collaborations. While first thought to be from a source of annihilating dark matter, there have since been more compelling observations - via experiments such as HAWC - of TeV halos...
Observations of the Cosmic Microwave Background have revolutionized cosmology and established ΛCDM as the standard model describing the contents and evolution of the universe. Higher precision measurements of the CMB temperature and polarization anisotropy will continue to probe high energy physics on scales inaccessible in laboratories. These include the effective number of relativistic...
Using hundreds of millions of galaxies in the largest galaxy catalog ever produced, the Dark Energy Survey (DES) has placed stringent constraints on the composition of the universe and the growth of large-scale structure. I will give an overview of the experiment and how we use the images we capture to further our understanding of cosmology, with an emphasis on the recent results from the...
Strong lensing is a powerful probe into the mass distributions—and the evolutionary histories—of galaxies and galaxy clusters. However, in studies using strong lenses to probe galaxy structure, we need to assess whether strong lenses are representative of the general galaxy population or they form a biased subsample. We carry out an investigation into selection biases potentially present in a...
We present ongoing work to automate and accelerate parameter estimation of galaxy-galaxy lenses using simulation-based inference (SBI) and machine learning methods.
Current cosmological galaxy surveys, like the Dark Energy Survey (DES), are predicted to discover thousands of galaxy-scale strong lenses, while future surveys, like the Legacy Survey of Space and Time (LSST) will find hundreds...
The physics community lacks user-friendly computational tools for constructing simple simulated datasets for benchmarking and education in machine learning and computer vision. We introduce the python library DeepBench, which generates highly reproducible datasets at varying levels of complexity, size, and content focused on a cosmological context. DeepBench produces both highly simplified...
From Chess to Telescopes: Using reinforcement learning to automate the observation scheduling process
The size, complexity, and duration of telescope surveys are growing beyond the capacity of traditional methods for scheduling pointings and observations. Scheduling algorithms must have the capacity to balance multiple, often competing, observational and scientific goals, address both...
In the aim to reduce the uncertainties in future neutrino oscillation experiments, it is necessary to have high accuracy in neutrino-nucleon cross section models. For this reason, the MINERvA experiment has measured many different exclusive neutrino-nucleon cross sections. Charged current neutrino Interactions with positive charged pion production is the predominant channel in the 1 GeV < W...
On behalf of the LArIAT collaboration.
The LArIAT (Liquid Argon In a Testbeam) experiment consists of a Liquid Argon Time Projection Chamber (LArTPC) placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility. It has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range of 300-1400 MeV/c. The scientific goal of the LArIAT...
For a better understanding of neutrino properties, we require precision measurements of the oscillation parameters. Presently the systematic uncertainty on these parameters can be as large 25-30% because of the lack of understanding of neutrino-nucleon and neutrino-nucleus cross sections. For future high precision measurements we will need to reduce this uncertainty down to 2-3%. MINER$\nu$A...