The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gd-doped water Cherenkov R&D detector located upstream of the Booster Neutrino Beam (BNB) at Fermi National Accelerator Laboratory (Fermilab). The ANNIE physics goal is to study the neutron yield of the neutrino-nucleus interaction. The R&D effort focuses on using new photodetector technology, chemical additives, and...
Boosted Dark Matter (BDM) is a dark matter (DM) model that uses a minimal U(1)’ extension to the Standard Model (SM) of particle physics. By introducing three DM particles $χ_0$,$χ_1$,and $χ_2$ and the dark photon (DP) X to the dark sector, gravitational anomalies can be explained, and the interactions with the SM can exist via a kinetic mixing between the DP and the SM photon. An interesting...
Presently experimental neutrino physics is going through an exciting time due to the high-precision measurements, in massive detectors, expected from future experiments, e.g. DUNE. The ICARUS experiment is the far detector of the Short-Baseline Neutrino program (SBN) at Fermilab. This program consists of a near and far detector that use the LAr TPC technology and are located along the axis of...
The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is anticipated to begin operation later this year. SBND is characterized by superb imaging capabilities and will record over a...
The Short Baseline Near Detector is an integral element of the SBN program at Fermilab. Two Time Projection Chambers (TPCs) constitute the heart of the detector, which is also equipped with a groundbreaking light detection system and a Cosmic Ray Tagger (CRT) system. SBND will begin cold commissioning in 2023, and will proceed to physics data-taking as soon as possible. SBND's commissioning...
The Short Baseline Near Detector is a Liquid Argon TPC designed to study neutrino physics at a distance of 110 m from the Booster Neutrino Beamline Target. SBND is also uniquely sensitive to Beyond the Standard Model (BSM) physics owing to the proximity to the target. SBND relies on triggers from different components to record interesting physics events inside the detector. SBND has a photon...
Liquid Argon Time Projection Chambers (LArTPCs) have become one of the main detection technologies in the field of neutrino physics. In addition to the ionization electrons produced by charged particles, used to reconstruct near photographic images of neutrino interactions, LAr is also a very prolific scintillator. New experiments like the Short Baseline Near Detector (SBND) are focusing on...