MicroBooNE is an 85 tonne liquid argon time projection chamber (LArTPC) detector situated at Fermilab exposed to both the Fermilab neutrino beams. It collected data from 2015 until 2021, which have been used for a plethora of physics analyses. Using MC samples of single electrons, photons, and protons that produce low-energy blips of ionization activity spanning the energy range 0-8 MeVee, we...
MicroBooNE is a neutrino experiment at Fermilab that ran from 2015 to 2020. It uses a liquid Argon time projection chamber (LArTPC) to detect neutrino events from a flux of predominantly muon neutrinos. In 2018, its predecessor MiniBooNE published results showing the detection of a significant excess of electromagnetic events in its data compared to expectation. The MiniBooNE anomaly defied...
Long-baseline neutrino experiments such as NOvA, T2K, DUNE, and Hyper-Kamiokande measure neutrino oscillations using charged current (CC) neutrino interactions. CC interactions in long-baseline experiments consist of three types of interactions, whose relative fraction depends on the neutrino energy quasielastic (QE), resonant (RES) or Deep Inelastic Scattering (DIS). Precise measurements of...
The MINERvA experiment at Fermilab uses $\approx$ 3 GeV(LE) and $\approx$ 6 GeV(ME) NuMI neutrino and antineutrinos beams interacting on different nuclear targets (He, C, Fe, Pb, Water and CH) located throughout the detector. My analysis targets the measurement of antineutrino inclusive double differential charged current cross section as a function of Bjorken x and four momentum transfer...
The (anti)neutrino interaction with nucleons and nuclei is important in
order to understand the hadronic interaction in the weak sector and modeling neutrino interaction cross sections for extracting the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix parameters. MINERvA (Main Injector Neutrino ExpeRiment to study $\nu-A$ interactions) is an experiment designed to study the...
NOvA is a long-baseline oscillation neutrino experiment composed by two functional identical detectors, a 300 ton Near Detector and 14kton Far Detector separated by 809 km and placed in an off-axis neutrino beam created at Fermilab, this configuration provides NOvA with a rich neutrino physics program to measure neutrino mixing parameters, determine the neutrino mass hierarchy and CP violation...
Long-baseline neutrino experiments, such as NOvA, T2K, and DUNE, are working to measure neutrino oscillation parameters and will benefit from reduced neutrino flux uncertainties. The dominant source of neutrino flux uncertainty arises from an insufficient knowledge of parent hadron yields from neutrino production targets. Using external hadron production measurements, we can significantly...
LArIAT (Liquid Argon In A Testbeam) is a LArTPC experiment which aims to understand and characterize interactions of neutrino final-state products with Argon. Differentiation between muons and pions in LArTPCs is difficult since the tracks for both particles exhibit very similar ionization densities. We are exploring unique new particle discrimination capabilities for pions and muons by...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gd-doped water Cherenkov R&D detector located upstream of the Booster Neutrino Beam (BNB) at Fermi National Accelerator Laboratory (Fermilab). The ANNIE physics goal is to study the neutron yield of the neutrino-nucleus interaction. The R&D effort focuses on using new photodetector technology, chemical additives, and...
Boosted Dark Matter (BDM) is a dark matter (DM) model that uses a minimal U(1)’ extension to the Standard Model (SM) of particle physics. By introducing three DM particles $χ_0$,$χ_1$,and $χ_2$ and the dark photon (DP) X to the dark sector, gravitational anomalies can be explained, and the interactions with the SM can exist via a kinetic mixing between the DP and the SM photon. An interesting...
Presently experimental neutrino physics is going through an exciting time due to the high-precision measurements, in massive detectors, expected from future experiments, e.g. DUNE. The ICARUS experiment is the far detector of the Short-Baseline Neutrino program (SBN) at Fermilab. This program consists of a near and far detector that use the LAr TPC technology and are located along the axis of...
The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is anticipated to begin operation later this year. SBND is characterized by superb imaging capabilities and will record over a...
The Short Baseline Near Detector is a Liquid Argon TPC designed to study neutrino physics at a distance of 110 m from the Booster Neutrino Beamline Target. SBND is also uniquely sensitive to Beyond the Standard Model (BSM) physics owing to the proximity to the target. SBND relies on triggers from different components to record interesting physics events inside the detector. SBND has a photon...
Liquid Argon Time Projection Chambers (LArTPCs) have become one of the main detection technologies in the field of neutrino physics. In addition to the ionization electrons produced by charged particles, used to reconstruct near photographic images of neutrino interactions, LAr is also a very prolific scintillator. New experiments like the Short Baseline Near Detector (SBND) are focusing on...
The Short-Baseline Near Detector (SBND) is a 100-ton scale Liquid Argon Time Projection Chamber (LArTPC) neutrino detector positioned in the Booster Neutrino Beam (BNB) at Fermilab. SBND is an on-surface detector, and will therefore be surrounded by an external cubical sub-detector, the Cosmic Ray Tagger (CRT) system, which is designed to reduce the cosmic ray background. The CRT system...
The Short-Baseline Neutrino (SBN) program at Fermilab aims to carry out precision searches for new neutrino physics [1]. Being the closest detector of the program to the Booster Neutrino Beam (BNB), Short Baseline Near Detector (SBND) is expected to measure an extremely high neutrino flux, allowing for world leading neutrino-nucleus interaction measurements as well as searches for physics...
Neutrino electron elastic scattering is a process with a precisely known cross-section that provides a standard candle for improving our knowledge about the neutrino flux in accelerator-based neutrino beams. This process also has a distinct experimental signature leveraging the kinematics of the scattering process that allows us to directly measure these events. The Short Baseline Neutrino...
In the naive Drell--Yan model, the angular distribution of the Drell--Yan process has zero $\cos2\phi$ modulation, where $\phi$ denotes the azimuthal angle of dimuons in the Collins--Soper frame. However, a sizable $\cos 2\phi$ dependence was observed in pion-induced Drell--Yan experiments, such as the NA10 and E615 experiments. The Boer--Mulders function is a transverse momentum dependent...
The $J/\psi$ particle is a spin-1 charmonium state with significant decay fraction towards lepton pairs. The distribution of decay particles from the $J/\psi$ is influenced by its spin alignment, which provides insights into different production mechanisms. SeaQuest, a fixed target experiment at Fermilab, was designed to observe muon pairs from charmonium and Drell-Yan production in $pp$ and...
Study of angular distributions in the Drell-Yan process is a valuable tool for unraveling the structure of hadrons. Measuring the $\cos2\phi$ angular dependence, where $\phi$ denotes the azimuthal angle of dimuons in the Collins-Soper frame, can be used to extract the Boer-Mulders (BM) function. The BM function describes the transverse-polarization asymmetry of quarks within an unpolarized...
Upcoming surveys are predicted to discover galaxy-scale strong lenses on the magnitude of $10^5$, making deep learning methods necessary in lensing data analysis. Currently, there is insufficient real lensing data to train deep learning algorithms, but training only on simulated data results in poor performance on real data. Domain adaptation can bridge the gap between simulated and real...
Dwarf galaxies are the oldest, least evolved, and most dark-matter-dominated galaxies in the universe, therefore studying them can shed light on the formation of some of the first galaxies to exist, the evolution of larger host galaxies like our Milky Way, as well as the abundance and distribution of dark matter across the Local Universe. Most research to date involving dwarf galaxies has...
The planning and execution of observational cosmology campaigns have undergone a substantial increase in complexity, particularly for advanced telescopes like the Rubin Observatory’s LSST, JWST, and the Nancy Grace Roman telescope.
Traditionally, astronomical observatories have relied on manual planning to scan a predefined list of astronomical objects, which usually results in suboptimal...
Direct dark matter detection experiments can reach the thresholds as low as $\mathcal{O}$(10eV). In that regime, we report precision ionization measurements induced by Compton scattering of gamma rays and nuclear recoils from neutrons. A skipper charge-coupled device (CCD) with single electron resolution developed for DAMIC-M experiment was used to collect data. Compton scattering on silicon...
The existence of dark matter is strongly indicated by various astronomical observations. However, its exact nature and properties are yet to be discovered. The SuperCDMS experiment, currently being built 2 km underground at SNOLAB in Canada, is a collaborative scientific effort to search for dark matter via direct detection. It will employ an array of silicon and germanium crystals...
The Mu2e experiment, scheduled to begin its first run in 2025 at Fermi National Accelerator Laboratory, will search for charged lepton flavor violation (CLFV) in the form of neutrinoless muon-to-electron conversion in the field of an aluminum nucleus. The current sensitivity limit on neutrinoless muon-to-electron conversion is on the order of 10$^{-13}$; Mu2e will improve sensitivity by four...
Dark matter is one of the most interesting research topics in physics. Many particle physicists are trying to identify it because we know that dark matter could be a major component of a complete fundamental description of nature. The Muon g-2 Experiment at Fermilab measures the anomalous precession frequency of the muon. Oscillations of this precession frequency could be produced by dark...
The upcoming High Luminosity LHC promises an integrated luminosity of 3000 fb-1 by the end of its operation. The High Granularity Calorimeter (HGCAL) is the proposed solution to replace the calorimeter endcaps of the CMS detector. The HGCAL is the first 5D imaging calorimeter to be used in a collider physics experiment, designed to withstand radiation and handle large pileup through...
We analyze the potential of future high-energy deep-inelastic scattering (DIS) experiments to probe new physics within the framework of the Standard Model Effective Field Theory (SMEFT). We perform a detailed study of SMEFT probes at a future Large Hadron-electron Collider (LHeC) and a Future Circular lepton-hadron Collider (FCC-eh) machine, and extend previous simulations of the potential of...
I will give an overview of the many uses of quasiparticles to search for axions, including the most notable, the plasmon which has been used in both experimental and astrophysical searches, as well as condensed matter axions and phonon-polaritons.
HEP software requires both general computational skills and domain knowledge of the field. In my experience, more and more young students lack the software knowledge needed to contribute to the HEP community. IRIS-HEP and the HSF have programs designed to bridge this gap for young scientists through training events. Specifically, I mention the Software Basics Training workshops that teach...
Modern deep neural networks comprise many operational layers, such as dense or convolutional layers, which are often collected into blocks.In this work, we introduce a new, wavelet-transform-based network architecture that we call the multi-resolution perceptron: by adding a pooling layer, we create a new network block, the WavPool.
The first step of the multi-resolution perceptron is...
The search for dark sector particles has been a subject of significant interest in particle physics due to its potential to explain several long-standing mysteries in the universe. In this presentation, I will discuss a novel beam dump experiment concept called Dump-produced Aboriginal Matter Searches at an Accelerator (DAMSA), a pioneering experimental challenge designed to overcome...