Please read these instructions before posting any event on Fermilab Indico

Indico will be unavailable on Wed., Dec 18th from 7 - 7:30am due to server maintenance.

21–26 Jul 2024
NIU Naperville Conference Center
US/Central timezone

Efficient 6-dimensional phase space reconstructions from experimental measurements using generative machine learning

23 Jul 2024, 16:00
24m
room 260

room 260

WG5

Speaker

Ryan Roussel (SLAC National Laboratory)

Description

Next-generation accelerator concepts, which hinge on the precise shaping of beam distributions, demand equally precise diagnostic methods capable of reconstructing beam distributions within 6-dimensional position-momentum spaces. However, the characterization of intricate features within 6-dimensional beam distributions using current diagnostic techniques necessitates a substantial number of measurements, using many hours of valuable beam time. Novel phase space reconstruction techniques are needed to reduce the number of measurements required to reconstruct detailed, high-dimensional beam features in order to resolve complex beam phenomena, and as feedback in precision beam shaping applications. In this study, we present a novel approach to reconstructing detailed 6-dimensional phase space distributions from experimental measurements using generative machine learning and differentiable beam dynamics simulations. We demonstrate that this approach can be used to resolve 6-dimensional phase space distributions from scratch, using basic beam manipulations and as few as 20 2-dimensional measurements of the beam profile. We also demonstrate an application of the reconstruction method in an experimental setting at the Argonne Wakefield Accelerator, where it is able to reconstruct the beam distribution and accurately predict previously unseen measurements 75x faster than previous methods.

Working group WG5 : Beam sources, monitoring and control

Primary authors

Ryan Roussel (SLAC National Laboratory) Juan Pablo Gonzalez-Aguilera (University of Chicago) Alexander Ody (Argonne National Laboratory) Eric Wisniewski (Illinois Institute of Technology) Wanming Liu (HEP, ANL) Young-Kee Kim Kim (The University of Chicago) John Power (Argonne National Lab) Auralee Edelen (SLAC)

Presentation materials