Conveners
Monday Afternoon II
- Stephen Brice (FNAL)
Mr
Christopher Hilgenberg
(Colorado State University)
10/06/2019, 16:15
Oral
As the SBN far-detector, the ICARUS T600, a set of liquid argon time-projection chambers (TPC), will operate at shallow depth and therefore be exposed to the full surface flux of cosmic rays. This poses a problematic background to the neutrino oscillation search, especially photons produced by muons passing in close proximity to, but not through, the active volume. A direct way to reject this...
Vincent Basque
(University of Manchester)
10/06/2019, 16:30
Oral
Liquid Argon Time Projection Chambers (LArTPCs) are currently being used extensively for neutrino physics due to their excellent capabilities in performing particle identification, and precise 3D and calorimetric energy reconstruction. The Liquid Argon In A Test Beam (LArIAT) experiment was located at the Test Beam Facility where it was exposed to a known charged particle beam. The...
Ms
Barbara Yaeggy
(Universidad Tecnica Federico Sta. Maria)
10/06/2019, 17:00
Oral
Based in the NuMI beamline at Fermi National Laboratory, the on-axis MINERvA experiment is focused on reaching precision measurements of neutrino and antineutrino interactions in diverse nuclei materials for energies up to 50 GeV. The results support the current and future oscillation experiments as well as to provide information about the structure of nuclei. A look at the latest results from...
Dr
Emrah Tiras
(Iowa State University)
10/06/2019, 17:30
Oral
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a gadolinium-loaded water Cherenkov detector located on the Booster Neutrino Beam at Fermilab. The experiment seeks to better understand neutrino-nucleus interactions by studying the number of final state neutrons produced in charged current interactions. It will be the first experiment testing Large Area Picosecond...
Dr
Anthony Villano
(University of Colorado Denver)
10/06/2019, 17:45
Oral
The Super Cryogenic Dark Matter Search (SuperCDMS) is at the low-threshold frontier. Our detector technology can detect nuclear recoils at the eV-scale energies necessary for generation-two low-mass dark matter searches. The SNOLAB installation, which will be commissioned in the next two years, will produce world-class limits on the presence of low-mass (between 0.5 and 10\,GeV/c$^2$) dark...
Dr
Yu-Dai Tsai
(Fermilab)
10/06/2019, 18:00
Oral
We propose a low-cost and movable setup to probe minicharged particles (or milli-charged particles) using high-intensity proton fixed-target facilities. This proposal, FerMINI, consists of a milliQan-type detector, requiring multi-coincident (nominally, triple-coincident) scintillation signatures within a small time window, located downstream of the proton target of a neutrino experiment....