Jul 16 – 26, 2022
US/Pacific timezone

Quantum Computing Simulation for Collective Neutrino Oscillations

Jul 18, 2022, 7:00 PM
2h 20m
211 South Ballroom (HUB)

211 South Ballroom



Valentina Amitrano (University of Trento (Italy))


Studies of neutrinos from astrophysical environments such as core-collapse supernovae, neutron star mergers and the early universe provide a large amount of information about various phenomena occurring in them. The description of the flavor oscillation is a crucial aspect for such studies, since the physics of matter under extreme conditions is strongly flavor-dependents (nucleosynthesis, proton/neutron ratio, spectral splits...).
It is well known that the neutrino flavor changes under the effect of 3 contributions: the vacuum oscillation, the interaction with the electrons of the surrounding matter, and the collective oscillations due to interactions between different neutrinos.
This last effect adds a non-linear contribution to the equations of motion, making the exact simulation of such a system inaccessible from any current classical computational resource.

Our goal is to describe the real time evolution of a system of many neutrinos by implementing the unitary propagator $U(t) = e^{-iHt}$ using quantum computation and paying attention to the fact that the flavor Hamiltonian $H$, in the presence of neutrino-neutrino term, presents an all-to-all interaction
that makes the implementation of $U(t)$, into a quantum algorithm, strongly dependent on the qubit topology.
In this contribution we present an efficient way to simulate the coherent collective oscillations of a system of $N$ neutrinos motivating the benefits of full-qubit connectivity which allows for more freedom in gate decomposition and a smaller number of quantum gates making simulation on near-term quantum devises more feasible.
We present the results obtained from a real quantum simulation on a trapped-ions based quantum machine for the cases of $N=4$ and $N=8$ neutrinos.

In-person or Virtual? In-person

Primary author

Valentina Amitrano (University of Trento (Italy))


Prof. Alessandro Roggero (University of Trento) Prof. Francesco Pederiva (University of Trento) Dr Piero Luchi (University of Trento) Dr Francesco Turro (University of Trento)

Presentation materials