Speaker
Description
While approximations of trivializing field transformations for lattice path integrals were considered already by early practitioners, more recent efforts aimed at ergodicity restoration and thermodynamic integration formulate trivialization as a variational generative modeling problem. This enables the application of modern machine learning algorithms for optimization over expressive parametric function classes, such as deep neural networks. After a brief review of the historical origins of this research program, I will focus on spectral coupling flows as a particular parameterization of gauge-covariant field diffeomorphisms. The concept will be introduced by explicitly constructing a systematically improvable semi-analytic solution for SU(3) gauge theory in (1+1)d, followed by a discussion and outlook on recent results in (3+1)d from a proof-of-principle application of machine-learned flow maps.
Topical area | Algorithms and Artificial Intelligence |
---|