Previously, it has been argued that the anomalous emission form the region around the Galactic Center observed by the Wilkinson Microwave Anisotropy Probe (WMAP), known as the "WMAP Haze", may be synchrotron emission from relativistic electrons and positrons produced in dark matter annihilations. In particular, the angular distribution, spectrum, and intensity of the observed emission are consistent with the signal expected to result from a Weakly Interacting Massive Particle (WIMP) with an electroweak-scale mass and an annihilation cross-section near the value predicted for a thermal relic. In this article, we revisit this signal within the context of supersymmetry, and evaluate the parameter space of the Constrained MInimal Supersymmetric Standard Model (CMSSM). We find that over much of the supersymmetric parameters space, the lightest neutralino is predicted to possess the properties required to generate the WMAP Haze. In particular, the focus point, bulk and A-funnel regions typically predict a neutralino with a mass, annihilation cross-section, and dominant annihilation modes which are within the range required to produce the observed features of the WMAP Haze. The stau-coannihilation region, in contrast, is disfavored as an explanation for the origin of this signal.