Speaker
Description
We study the possibility for large volume underground neutrino experiments
to detect the neutrino flux from captured inelastic dark matter in the Sun.
The neutrino spectrum has two components: a mono-energetic "spike" from
pion and kaon decays at rest and a broad-spectrum "shoulder" from prompt
primary meson decays. We focus on detecting the shoulder neutrinos
from annihilation of hadrophilic inelastic dark matter with masses in the
range 4-100 GeV. We find the region of parameter space that these
neutrino experiments are more sensitive to than the direct-detection
experiments. For dark matter annihilation to heavy-quarks, the projected
sensitivity of DUNE is weaker than current (future) Super (Hyper) Kamiokande
experiments, while for the light-quark channel, only the spike is
observable and DUNE will be the most sensitive experiment.
Working Group | WG 6: Detectors |
---|