Conveners
Parallel: WG6
- Yasuhiro NISHIMURA (Keio University)
Parallel: WG6
- Thorsten Lux (IFAE - BIST)
Parallel: WG6
- Yasuhiro NISHIMURA (Keio University)
Parallel: WG6
- Yasuhiro NISHIMURA (Keio University)
The Deep Underground Neutrino Experiment (DUNE) aims to make precision measurements of neutrino oscillation parameters. To accomplish this, new technologies must be utilized at the DUNE Near Detector to handle characterizing the intense neutrino beam. We are testing a novel Liquid Argon Time Projection Chamber (LArTPC) detector prototype with a modularized setup, composed of 4 modules each...
Machine learning algorithms have long been utilized across many experimental collaborations within the neutrino physics community in applications to ascertain the singular kinematic quantity of initial neutrino energy for use in neutrino oscillation analyses. However, most of these algorithms do not incorporate a coherent physical picture of initial neutrino kinematics, opting to introduce...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment in the US. It will have four far detector modules, each holding 17 kilotons of liquid argon. These modules sit 1500 meters underground and 1300 kilometers from the near detector complex. The Vertical Drift (VD) detector module will feature X-ARAPUCA photon detectors installed on...
The NOvA Experiment is designed to study neutrino oscillations utilizing Fermilab’s “Neutrinos from the Main Injector” (NuMI) beam. The experiment features a near detector located at Fermilab and a far detector located in Ash River, Minnesota. The NOvA Test Beam program aims to enhance the physics reach of NOvA by improving understanding of systematic uncertainties associated with the detector...
The NOvA experiment, a long-baseline neutrino experiment, uses two detectors: one located at Fermilab and another at Ash River, Minnesota. The Near Detector, situated approximately 100 meters underground, observes cosmic muons at a rate of ~35 Hz, while the Far Detector, located on the surface, observes cosmic muons at a rate of ~150 kHz. The rate of cosmic muons exhibits seasonal variation...
DUNE's ability to detect and study astrophysical neutrinos will critically depend on the capability of liquid argon time projection chambers (LArTPCs) to reconstruct particle interactions that deposit extremely small amounts of energy in the active LAr. MicroBooNE has demonstrated reconstruction capabilities for energy depositions at the ~MeV and sub-MeV scale, which manifest as isolated...
The Jiangmen Underground Neutrino Observatory (JUNO) will be a 20-kiloton liquid scintillator detector, currently under construction in southern China. JUNO will be equipped with 17,612 20-inch photomultiplier tubes (PMTs) and 25,600 3-inch PMTs and will address a variety of physics programs including reactor/atmospheric/solar/geo/supernova neutrino observations and new physics searches. The...
The main goal of the long-baseline experiment T2K is a search for CP violation in neutrino oscillations. To obtain a better sensitivity, T2K upgraded the near neutrino detector. A novel 3D highly granular scintillator detector called SuperFGD of a mass of about 2 tons was built, installed into ND280 magnet and commissioned with the neutrino beam. It will serve as a fully-active neutrino...
ICEBERG is a liquid argon time projection chamber at Fermilab for the purpose of testing detector components and software for the Deep Underground Neutrino Experiment (DUNE). The detector features a 1.15m x 1m anode plane following the specifications of the DUNE horizontal drift far detector and a newly installed X-ARAPUCA photodetector. The status of ICEBERG will be reported along with...
The Liquid Argon Time Projection Chamber (LArTPC) technology is widely used in neutrino experiments and beyond the standard model physics searches such as nucleon decay and dark matter. The Deep Underground Neutrino Experiment (DUNE) will employ the LArTPC technology at an unprecedented scale for physics programs, benefiting from its large target mass and excellent imaging, tracking, and...
Current and future experiments need to know the stopping power of liquid argon for charged particles. It is used directly in calibration, to measure muon energy, and more broadly affects the simulation of all charged particles. The main parameter that controls stopping power is the mean excitation energy, or I-value. Commonly used values are $(188\pm6)$eV from ICRU-37 (1984), and...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation, long-baseline experiment that will explore some of the fundamental open questions in neutrino physics. ND-LAr is a Liquid Argon Time Projection Chamber (LArTPC) in the near detector complex of DUNE that will precisely characterize the outgoing neutrino beam. With a modularized design, as well as state-of-the-art light and...
JUNO (Jiangmen Underground Neutrino Observatory) will be the largest liquid scintillator detector for neutrino physics. It will employ 20 000 tons of linear alkyl benzene (LAB), 2.5 g/L of PPO and 3 mg/L of bis-MSB. The main goal of JUNO is to determine the neutrino mass ordering in six years of data taking at 3 σ level.
The main detector of JUNO is a gigantic (35.4 meter of diameter)...
The Near Detector of the T2K experiment at J-PARC has recently being upgraded in order to reduce the present systematic uncertainties affecting the oscillation parameters measurements and to exploit the increased neutrino beam power of the J-PARC complex.
One of the major improvements to the T2K ND280 detector consisted of the integration of two large size (~ 3m3 each) new horizontal High...
Plastic scintillator detectors with 3D granularity and sub-nanosecond time resolution offer simultaneous particle tracking, identification, and calorimetry. However, future enhancements necessitate larger volumes and finer segmentation, posing significant challenges in manufacturing and assembly due to high costs, extensive time, and precision requirements. The 3DET R&D collaboration has...
DUNE will be a long-baseline neutrino oscillation experiment that will perform precision measurements of the PMNS mixing parameters, unambiguously determine the neutrino mass order, and discover leptonic CP violation. It also comprises a rich non-accelerator physics program as the detection of supernova neutrinos and BSM physics. The Far Detector of DUNE will consist of four modules, of which...
In this talk, I present a light detection system called APEX (Aluminum Profiles with Embedded X-arapucas) targeted for next generation long-baseline neutrino experiment DUNE phase II FD3 where large-area light trap photodetectors will be instrumented on the entire field cage of a 17-kt LArTPC module. The photodetectors will cover four vertical walls of a DUNE vertical drift (VD) like LArTPC...
The 1st Far Detector of the Deep Underground Neutrino Experiment (DUNE) will be instrumented with a Vertical Drift Liquid Argon Time Projection Chamber (VD LArTPC). It will also be equipped with a Photo-Detection System (PDS), which provides the time stamp of non-beam events, a precise time measurement as well as contributing to the energy reconstruction. The characteristics of this new type...
The Deep Underground Neutrino Experiment (DUNE) is a next generation long-baseline neutrino experiment that will send an intense beam of neutrinos through two detector complexes: a near detector complex located at Fermilab (Chicago), and a far detector complex located ~1.5 km underground at Sanford Underground Research Facility (SURF) in South Dakota.
The DUNE far detector (FD) will consist...
High-resolution accelerator neutrino detection requires massive active material and fine-grained 3D tracking capability.
Organic scintillators can offer both, combined with sub-nanosecond time resolution.
A millimeter, or even sub-millimeter, particle tracking resolution would be desirable to resolve those nuclear effects that are known to introduce a bias in the reconstruction of the...
In this contribution, we present a proof-of-concept, fine-granularity particle detector constructed from plastic scintillating fibres (SciFi) readout with a Single-Photon Avalanche Diode (SPAD) array sensor, intended for the next generation of neutrino experiments. These experiments will be limited by systematic uncertainties, of which many can be constrained by precisely reconstructing...