Welcome to the CPAD workshop, agenda and goals for the workshop
We present s a novel and efficient device to measure wire tensions in particle physics detectors. Traditionally, a common method was to physically pluck each wire and detect its natural frequency with a laser.
In this new method, an alternating electric field across the neighboring wires vibrates the test wire in the middle. Due to the corresponding change in capacitance, a bipolar resonance...
Barium fluoride (BaF$_2$) has a scintillation light component with a decay time shorter than 600 ps, the fastest of any inorganic scintillator, and is also quite radiation hard. This makes BaF$_2$ an excellent candidate for an electromagnetic calorimeter for the next generation of rare decay experiments, as it could provide superb time resolution, high rate capability and excellent radiation...
Digital Hadron Calorimetry
By Yasar Onel
University of Iowa, Iowa City, IA 52241, USA
On behalf of CALICE collaboration
Particle Flow Algorithms (PFAs) attempt to measure each particle in a hadronic jet individually, using the component or detector subsystem providing the best energy/momentum resolution. The application of PFAs has been shown to achieve energy resolutions of 3 – 4%...
The muon campus program at Fermilab includes the Mu2e experiment that will search for a charged-lepton flavor violating processes where a negative muon converts into an electron in the field of an aluminum nucleus, improving by four orders of magnitude the search sensitivity reached so far.
Mu2e’s Trigger and Data Acquisition System (TDAQ) uses {\it otsdaq} as its solution. Developed at...
SuperCDMS Z-sensitive Ionization and Phonon(ZIP, iZIP) detectors have shown great success in discriminating electron recoils and nuclear recoils, while the High Voltage (HV) detectors have reached very low (~100 eVnr) energy thresholds by sacrificing that discrimination. This talk focuses on a novel phonon-mediated two-stage silicon detector that will retain both an excellent threshold...
Silicon Carbide (SiC) is a wide bandgap semiconductor with outstanding physical properties for detectors of ionizing radiation. The wide band gap (up to 3.2 eV), high saturation velocities of the charge carriers (200 um/ns), high breakdown field (2 MV/cm), high thermal conductivity (4.9 W/cm²) and relatively large threshold displacement energy (21-35eV), allow low-noise, fast response and...
CUPID is a proposed upgrade to the ton-scale neutrinoless double beta decay experiment, CUORE which is current operating at the Laboratori Nazionali del Gran Sasso (LNGS). The primary background in CUORE are degraded $\alpha$'s, and CUPID aims to improve the background by over a factor of 100 by utilizing a two channel energy collection approach, light and heat. This will allow for event by...
The VMM3a is a System on Chip (SoC) custom Application Specific Integrated Circuit (ASIC). It is the production version which will be used as the front ASIC for both Micromegas and sTGC detectors of the ATLAS Muon New Small Wheels upgrade. Due to its highly configurable parameters it can be used in a variety of tracking detectors and it is already proposed for another experiments. It is...
A large, worldwide community of physicists is working to realise an exceptional physics program of energy-frontier, electron-positron collisions with the International Linear Collider (ILC). The International Large Detector (ILD) is one of the proposed detector concepts at the ILC. The ILD tracking system consists of a Si vertex detector, forward tracking disks and a large volume Time...
The ITkPix-V1 readout front-end (FE) chip, based on 65 nm CMOS technology, is designed by the RD53 collaboration as the pre-production chip for the upgraded ATLAS Inner Tracker Pixel detector operating with extreme rates and radiation at the High-Luminosity LHC. The ITkPix-V1 chip uses a novel differential analog FE design featuring low noise and small time-walk. ITkPix-V1 was submitted in...
The DECAL sensor, a depleted monolithic active pixel sensor (DMAPS), was developed for digital calorimetry, where the number of pixels above threshold are counted to estimate the shower energy. The pixel size must be sufficiently small to avoid hit saturation (where in the core of dense showers multiple particles hit the same pixel). The DECAL and DECAL FD sensors have been fabricated in the...
Semiconductor detectors, particularity those using CCD or Neganov-Trofimov-Luke (NTL) assisted phonon-mediated techniques are the technologies of choice for the experiments seeking rare and very low energy interactions such as low mass dark matter or coherent elastic neutrino nucleus scattering (CE$\nu$NS). The ultimate sensitivity reach of the current detector design is hindered by a...
The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the Charged Lepton Flavour Violating neutrino-less coherent conversion -N(A,Z) e-N(A,Z) of a negative muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of physics beyond the Standard Model. Mu2e detectors comprise a straw-tracker, an...
Sampling calorimeters for high energy physics experiments often use plastic scintillator as the active medium due to its low cost and ease of use. However, response to radiation damage is a critical factor in detector design. This talk will present the effects of ionizing radiation on the signal produced by plastic scintillator rods for various substrate materials, dopant concentrations,...
Single-photon avalanche diodes (SPADs) and silicon photomultipliers (SiPMs) are important tools for the detection and counting of single photons with excellent timing capabilities. I will give an overview of the physical mechanisms that determine the time resolution and the efficiency of these detectors. I will show calculations indicating that single-photon time resolutions of better than 10...
Low-$T_c$ TES based radiation detectors are excellent choices for experiments in fundamental physics such as direct detection of low-mass dark matter, neutrino-less double beta decay search, and coherent neutrino nucleus scattering, owing to their advantages of low threshold, high energy resolution, and fast response time. We have been developing low-$T_c$ materials and devices with the goal...
The luminosity of the High Luminosity Large Hadron Collider (HL-LHC) will be increased to 7.5×10$^{34}$cm$^{−2}$s$^{−1}$ in Run 4 that will start in 2027. The expected integrated luminosity will be 3000-4000 fb$^{-1}$ at the end of the HL-LHC operation. The liquid argon calorimeter consists of electromagnetic barrel, electromagnetic end-cap, hadronic endcap and forward calorimeter. The...
Highly granular electromagnetic calorimeter based on scintillator strip with SiPM readout (Sc-ECAL) is under development in the framework of the CALICE collaboration for future electron-positron colliders such as ILC and CEPC. The detection layers with scintillator strips (45 mm × 5 mm × 2 mm each) coupled to SiPMs are stacked alternately in an orthogonal orientation. This technique achieves...
Every timing detector needs to know the time, and every timing detector needs to refer to the same reference clock. As we push the limits of the timing precision of new detectors, we need to distribute to these detectors a reference clock that has a precision that is much better than the detector's. In this presentation we will describe how we have demonstrated the feasibility of delivering...
Impurities in noble liquid detectors used for neutrino and dark matter experiments can significantly impact the quality of data. We present an experimentally verified model for describing the dynamics of impurity distributions in liquid argon (LAr) detectors. The model considers sources, sinks, and transport of impurities within and between the gas and liquid argon phases. Measurements of the...
In frontier physics, precision calorimetry from photons and charged and neutral massive particles have been crucial to major discoveries. Better resolution and low detection thresholds are of great interest for dark matter searches, solar and reactor neutrino detection and oscillations, neutrino mass measurements, x-ray astronomy, and double-beta decay. A Challenge for semiconductor detectors:...
Silicon Photo-Multipliers (SiPMs) have emerged as a compelling photo-sensor solution over the course of the last decade. SiPMs consist of an array of tightly packed microcells with each microcell acting as an avalanche photodiode that can behave in the Geiger mode regime when the device is reverse biased above a threshold voltage (breakdown voltage). In contrast to the widely used...
In order to investigate options for a future high rate TPC we have tested various gas gain structures and gas mixtures. Our goal was to focus on crucial TPC parameters: ion back flow, energy resolution (dE/dx), electron and ion drift speed, electron diffusion (in E- and B-fields), and stability. We concentrated on two options for the gain structure: 4 GEMs and MMG+2GEMs. For the hybrid...
We discuss the current status and prospects for three-dimensional integration (3D) of sensors and electronics. 3D consists of a suite of technologies including through-silicon vias, wafer bonding and thinning, and fine pitch interconnection. These technologies have the potential to transform the capabilities of pixelated sensors in High Energy Physics providing finer pitch, more complex...
TES based radiation detectors with highly multiplexed SQUID readout have been widely adapted in microcalorimeter based experiments and are the technology of choice of many next generation experiments (CMB-S4, Athena X-ray satellite and others) owing to their excellent energy resolution, threshold and their fast response. These properties also make them a very desirable choice for applications...
MAGIX is a new precision experiment, currently being developed at the Johannes Gutenberg University in Mainz, that will explore fundamental nuclear and particle physics at energies up to 100 MeV at the MESA high intensity electron beam.
To achieve its goals, MAGIX requires two short-drift, low material budget TPCs. Those detectors will feature a novel open field-cage concept to reduce the...
In the last years, there has been a growing interest in the use of low energy threshold technologies in nuclear reactors as a test bench for neutrino properties, new neutrino interactions at low energy, and the observation of new particles like dark photons, axion-like particles, etc. (through photon-production mechanisms). Nuclear-reactor cores produce the largest neutrino and gamma fluxes...
The CMS High Granularity Calorimeter (HGCAL) has been heavily influenced by designs for detectors at future colliders, and the experience gained in constructing it will be crucial to those future projects. Designed to function in the end cap region of CMS at the HL-LHC, the calorimeter must cope with extremely high particle flux while delivering good physics performance.
The HGCAL is...
The Front-End Link eXchange (FELIX) system is an interface between the trigger and detector electronics and commodity switched networks for the ATLAS experiment at CERN and other experiments. The detector and trigger electronic systems of the ATLAS experiment are largely custom and fully synchronous with respect to the 40.08 MHz clock of the Large Hadron Collider (LHC). The FELIX system uses...
The need to operate SiPM after very high radiation levels in current and future HEP detectors is growing. The proposed CMS MTD Barrel timing layer (BTL) will see a total neutron flux of 2E14 n/cm2 (1 MeV eq.) at the end of operation (EOO). This new sub-detector is located just outside of the CMS Tracker and is already planned to be operating at a cryogenic temperature of -35°C. In the last...
Nanoscience technologies are developing new cutting edge materials and devices for a wide range of applications. HEP can take advantage of the many advancements by looking toward thin film fabrication techniques to implement a new type of particle detector. Thin Film Detectors have the potential to be fully integrated, large area, low power, low dead material, and low cost. I will discuss...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment based on liquid argon TPC (LArTPC) technology. DUNE's single-phase prototype ProtoDUNE-SP at CERN finished its 2-year Phase-1 running in July 2020, which successfully collected test beam data and cosmic ray data. The DUNE collaboration is preparing ProtoDUNE-SP Phase-2 run which...
In HEP experiments, detector data communication is one of the key R&D areas. This is especially important when the operating environments inside the detectors preclude the use of COTS in these link systems. ASICs and optical modules are being developed to meet the challenges of detector upgrades in the LHC. This effort has been led by the CERN common projects GBT/lpGBT and Versatile Link/VL+. ...
Many projects are underway aiming to experimentally detect the elusive dark matter candidate particle, the WIMP. Furthermore, some of these technologies are leveraging their strengths to explore other rare event phenomena, such as Coherent Elastic Neutrino-Nucleus Scattering (CEvNS). Both avenues require aggressively combating sources of background events that are detrimental to the overall...
Nuclear recoil (NR) calibrations are vital for understanding detector responses to dark matter candidates and neutrino-nucleus signals in direct detection experiments. Low-mass (<5 GeV) dark matter candidates and $^8$B neutrinos drive the need for high-statistics/low-systematic calibrations at sub-keV NR energies.
We report the results of NR calibrations in the LUX dark matter detector...
The NEWS-G collaboration is searching for light dark matter candidates using a novel detector concept, the spherical proportional counter.
Access to the mass range from 0.05 to 10 GeV is enabled by the combination of low energy threshold, light gaseous targets (H, He, Ne),
and highly radio-pure detector construction. Initial NEWS-G results obtained with SEDINE, a 60 cm in diameter...
The CALICE collaboration develops highly granular calorimeters for future particle physics experiments. The Analogue Hadron Calorimeter (AHCAL), a sampling calorimeter using small plastic scintillator tiles directly read out by silicon photomultipliers (SiPMs) as active material, is a scalable concept for the hadronic calorimeter, providing good energy, spatial and time resolution at moderate...
The CMS experiment has adopted ATCA standard for the upcoming Phase-II upgrade. We have developed a novel approach to the design of ATCA boards for this upgrade. Instead of relying on a regular single-PCB framework, with possibly some additional mezzanine cards, the X2O design is using a large heat sink as a main mechanical carrier, with various modules attached to it as needed. The modules...
The Timing Optimized PID Silicon Detector for the EIC (TOPSiDE) is Argonne's proposed central detector concept for the Electron-Ion Collider, with its physics goals of perturbative and non-perturbative Quantum ChromoDynamics (QCD) studies of the structure of nucleons and nuclei. It requires high precision tracking, good vertex resolution, and excellent particle identification with a timing...
The Axion Resonant InterAction DetectioN Experiment (ARIADNE) will search for spin-dependent forces mediated by the QCD axion between an unpolarized Tungsten source mass and a sample of polarized helium-3 as the sensor by using a nuclear magnetic resonance based technique. The experiment relies on low magnetic gradients for the helium to remain polarized during transport to the sample cell,...
The next generation of neutrinoless double beta decay searches aims to reach sensitivities in the half-life of the process up to $10^{28}$ years. This will require tonne scale detectors with essentially no background in their region of interest. One of the most promising solutions, which may be implemented by gas or liquid xenon TPCs, is the possibility of tagging the daughter ion produced in...
NEWS-G (New Experiments With Spheres-Gas) is a rare event search experiment using Spherical Proportional Counters (SPCs). Primarily designed for the direct detection of dark matter, this technology also has appealing features for Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS) studies and, potentially, searches for neutrinoless double beta decay. A study to assess the feasibility of...
We present here measurements on AC-LGADs that can be made with greater segmentation than the DC-coupled devices planned for the HL-LHC. The new devices maintain a 100 % fill factor for charge collection. This is achieved by employing un-segmented (p-type) gain layer and (n-type) N-layer separated from metal readout pads by a thin dielectric layer. The design allows great flexibility in the...
We present a design concept and preliminary results for a method to increase the light collected by a sparse array of SiPMs, by placing a metalens in front of each photodetector. A metalens is a flat lens that uses nanostructures on the surface to focus incident light. Metalenses offer similar focusing power to traditional lenses, but with reduced bulk and cost, and can be mass-produced in...
To improve detector sensitivities, neutrino physics and dark matter searches are pursuing novel low background and self-vetoing materials for components. One material of interest is poly(ethylene-2, 6-naphatalate) (PEN) for its inherent scintillating and wavelength shifting properties, as well as its commercial availability and structural stability. Commercially available PEN material is...
The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. Energy resolution requirements might largely exceed the performance of today’s detectors and therefore, require the development of new hadronic calorimeter concepts that combine fine granularity, excellent time resolution and possibly dual readout capabilities. The goal...
Future long baseline neutrino experiments such as the Deep Underground Neutrino Experiment (DUNE) pose challenges for development of readout techniques for multi-kiloton LAr Time Projection Chambers (TPC). In contrast to wire/strip anode readout, a pixelated readout eliminates disadvantages such as disambiguation in 2D track reconstruction. The Q-Pix Consortium, established in 2019, is...
Amorphous selenium (a-Se) is a glass-former capable of deposition at high rates by thermal evaporation over a large area. It has a bandgap of 2.2 eV and can achieve a photodetection efficiency of approximately 90% at a wavelength of 400 nm. The optical photogeneration efficiency in a-Se depends on the photon energy, the applied electric field and temperature. The Onsager approach has been used...
The next generation of high energy physics colliders call for major advances in tracking detector technology. For example, the proposed FCC-hh calls for a tracker with 5 um spatial resolution per hit and 5 ps time resolution per track, in order to disentangle the expected 1000 proton-proton collisions per bunch crossing. We will present results of the collaborative work by FNAL, BNL, and KEK...
At the 8 MeV proton accelerator of the Queen's University Reactor Materials Testing Laboratory, we are establishing a quasi-monoenergetic beam of neutrons. These neutrons will be used to induce nuclear recoils of known energy in the dark matter detectors of the NEWS-G experiment. This is needed to to measure the quenching factors of the various gases used, in particular in proton-rich gases...
Development of Novel Inorganic Scintillators for Future High Energy Physics Experiments
Chen Hu, Liyuan Zhang and Ren-Yuan Zhu
California Institute of Technology
Pasadena, CA 91125, USA
[zhu@hep.caltech.edu][1]
February 12, 2021
Total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals provide the best energy resolution and detection efficiency for photon...
We present the development of a cryogenic Low-Noise Amplifier (LNA) for the readout of Superconducting Nanowire Single Photon Detectors (SNSPDs). The integrated circuit operates at 4 K and is based on fourth-generation heterojunction bipolar transistors from a state-of-the-art, commercially available SiGe BiCMOS platform, which allows large scale integration and economy of scale. Target...
NEWS-G (New Experiments With Spheres-Gas) is an innovative experiment aiming to shine a light on the dark matter conundrum with a novel gaseous detector, the spherical proportional counter. It uses light gases, such as hydrogen, helium, and neon, as targets, to expand dark matter searches to the 0.05 - 10 GeV/c$^{2}$ mass region. NEWS-G produced its first results with a detector -60 cm in...
The Mu2e experiment at Fermilab will search for the charged-lepton flavor violating (CLFV) neutrino-less conversion of a negative muon into an electron in the field of a nucleus. Mu2e-II, a proposed upgrade of Mu2e, aims to improve the expected sensitivity by at least an order of magnitude. This upgrade will require a similar increase in the data rate and the radiation tolerance of the front...
Liquid argon is commonly used as a detector medium for neutrino physics and dark matter experiments in part due to its copious scintillation light production in response to its excitation and ionization by charged particle interactions. As argon scintillation appears in the vacuum ultraviolet (VUV) regime and is difficult to detect, wavelength-shifting materials are typically used to convert...
Nuclear magnetic resonance is one of the promising approaches in searching for axion-like dark matter. We report the first science results of the CASPEr-electric search for the EDM and the gradient couplings of axion-like dark matter to nuclear spins in the mass range of 162 neV to 166 neV. The experiment employs an ensemble of $^{207}$Pb nuclear spins inside a polarized ferroelectric solid...
Active shielding is essential in modern experimental particle physics, it provides a robust means to cross-check the potential signal of the main detector. The liquid scintillator (LS) is widely used in neutrino and dark matter physics. Their high light yield, long term stability and potential for mass production makes them an ideal material for large scale detectors. However, the production...
In the past, homogeneous electromagnetic calorimeters have allowed precision measurements of electrons and photons, while high granularity, dual-readout, and compensating calorimeters have been considered promising paths for improving hadronic measurements. In this talk, the possibility of using a homogeneous high-granularity crystal electromagnetic calorimeter using SiPMs photodetectors...
The MIDNA application specific integrated circuit (ASIC) is a prototype cryogenic skipper-CCD readout chip fabricated in a 65 nm LP CMOS process and intended for the OSCURA dark matter detection project. The MIDNA ASIC integrates four front-end channels designed to interface with the 4000 skipper-CCDs for a 28 gigapixel camera for dark matter detection. Each channel is only 0.156...
The Low-Gain Avalanche Diode (LGAD) silicon detector has already shown excellent timing performances. Since fine pixelization of LGADs is difficult to achieve, the AC-coupled LGAD (AC-LGAD) approach was introduced to provide high spatial resolution. In this type of device, the signal is capacitively induced on fine-pitched electrodes placed over an insulator and is shared among multiple...
With some leading direct dark matter detection experiments now observing background events and WIMP-nucleon scattering limits approaching the neutrino floor, there is renewed interest in constructing an observatory capable of detecting and distinguishing WIMP and coherent elastic neutrino-nucleus scattering (CEvNS) via directionality. CYGNUS aims to deploy gas-target time projection chambers...
Most experiments using noble elements, past, current or planned, have exploited the abundant light yield in the vacuum ultraviolet (VUV) region ranging from 78-80 nm (Ne and He) to 128 nm (Ar), 150 nm (Kr) and 175 nm (Xe). It has however been known that noble elements, when excited by ionizing radiation, do also emit light at longer wavelengths, up to the near-infrared (NIR) although many...
Long-lived radioactive isotopes produced by cosmogenic activation are a major source of background for rare event searches such as dark matter and neutrinoless double beta decay. Understanding the production rates of these cosmogenic isotopes is extremely important for determining the total allowable surface residence time of detector materials during fabrication, storage, and transportation....
CLAS12 detector is installed at Jefferson Lab’s experimental Hall-B and the purpose of its huge science program is to provide substantial progress in understanding the Quantum Chromo Dynamics (QCD). Such a detector requires a sophisticated trigger and current experiments use an on-line FPGA-based system that relies upon custom firmware and electronics both of which are difficult reconfigure...
Plastic scintillators are one of the most widely used active materials in nuclear and particle physics experiments. Their reliability, simplicity to operate, and low-cost make them the material of choice for many applications. The introduction of modern additive manufacturing techniques opens the possibility of expanding their use to increased complexity or production scales through 3D...
Over 80% of the mass in the universe is made up of an invisible substance known as dark matter. But exactly is dark matter? This is a complete mystery. There are a number of hypotheses being tested by experiments throughout the world, among them the idea that dark matter is an ultralight bosonic field that interacts with atomic spins. The Global Network of Optical Magnetometers to search for...
The Mu2e experiment is designed to search for the charged-lepton-flavor-violating process, 𝜇− to a 𝑒−, with unprecedented sensitivity. The single 105-MeV electron that results from this process can be mimicked by electrons produced by cosmic-ray muons traversing the detector. An active veto detector surrounding the apparatus is used to detect incoming cosmic-ray muons. To reduce the...
To address the challenges of providing high performance calorimetry and other types of instrumentation in future experiments under high luminosity and difficult radiation and pileup conditions, R&D is being conducted on promising optical-based technologies that can inform the design of future detectors, with emphasis on ultra-compactness, excellent energy resolution and spatial resolution, and...
Metastable excitations in materials can store energy longer than equilibration time for the rest of the system. This disequilibrating can arise from a many sources - ionizing radiation, electric breakdown, mechanical stress, changes in temperature, and changes in electric or magnetic fields. Relaxation of stored energy leads to afterglow in gases or temperature stimulated luminescence,...
Argon has advantages over xenon in cost, kinetic matching, and ease-of-purification when used as a target for the detection of nuclear recoils from coherent neutrino-nucleus scattering (CENNS) and light WIMP dark matter. However, the detection of low-energy ionization signals in argon by the proportional scintillation signal (S2) mechanism is frustrated by the long lifetime and short...
Measurements of electrical characteristics of LGADs and 3D sensors before and after exposure to radiation levels foreseen in LHC upgrade conditions are presented.
At the previous CPAD workshop (Madison, 2019), we presented observation of Pulse-Shape Discrimination (PSD) in segmented plastic scintillator developed at LLNL instrumented with modern photosensors — silicon-photomultiplier arrays.
This talk discusses the progress of various experimental efforts we have pursued for several potential applications of such detectors, ranging from nuclear...
Gaseous Time Projection Chambers (TPCs) can be used in Directional Dark Matter (DDM) searches to unambiguously identify a galactic origin for Dark Matter candidates. Directional sensitivity at low recoil energies is limited by diffusion, dispersion during amplification, and digitization effects such as charge pileup. We discuss a new algorithm that models and partially removes these effects...
Atom interferometers exploit spatially delocalized quantum states to make a wide variety of highly precise measurements. Recent technological advances have opened a path for atom interferometers to contribute to multiple areas at the forefront of modern physics, including searches for wave-like dark matter, gravitational wave detection, and fundamental quantum science. In this talk, I will...
Identifying Cherenkov photons produced when charged particles interact with scintillators provides additional information about the interaction, including directionality and particle identification, while maintaining the excellent energy and position resolution typical of scintillator detectors. The difference in arrival times of photons with different wavelengths also provides information...
The US particle physics community engaged in the Snowmass process is studying collider projects for the post-LHC era. Among those, muon colliders are particularly interesting due to their ability to reach multi-TeV energies in the environment typical for lepton colliders where backgrounds due to other physics processes are significantly lower than at a hadron collider experiment. However, as...
Dust fallout on material surfaces can be a significant contribution to radioactive background in rare-event ultra-sensitive radiation detectors. Until now, estimates of such contribution have been largely performed based on fallout models and assumed dust composition. This work presents an effective method for the direct determination of contaminant fallout rate on material surfaces from...
At a future Higgs factory, detectors providing ultimate resolution will be required. A limitation to date has been the measurement of hadronic energy, this in contrast to the measurement of electromagnetic energy. Total absorption electromagnetic calorimeters made of inorganic crystals provide the best energy resolution and detection efficiency for the measurement of photons and electrons and...
As noble elements like liquid xenon and argon have become an indispensable mode of particle detection, it has become increasingly crucial to understand and model their intrinsic physics. The Noble Element Simulation Technique (NEST) allows us to do this by offering a comprehensive, mature framework to simulate the atomic and nuclear physics of energy deposition and the resulting detector...
Low Gain Avalanche Detectors (LGADs) are thin silicon detectors (ranging from 20 to 50 um in thickness) with moderate internal signal amplification (up to a gain of ~50) [1]. LGADs are capable of providing measurements of minimum-ionizing particles with time resolution as good as 17 pico-seconds [2]. In addition, the fast rise time (~500ps) and short full charge collection time (~1ns) of LGADs...
CYGNO is a project realising a cubic meter demonstrator to study the scalability of the optical readout concept for a large-volume, GEM-equipped TPC,
to be employed as directional detectors for rare events detection.
The combined use of high-granularity sCMOS and fast sensors for reading out the light produced in GEM channels during the multiplication processes was shown to...
New developments in liquid scintillator and photon detection technologies make it possible to discriminate between Cherenkov and scintillation signals in large scale detectors. The Theia design leverages these advances to combine the particle direction and identification properties of Cherenkov light with the higher light yield and energy resolution of scintillator to create a broad physics...
With radiopurity controls and small design modifications a kton-scale liquid argon time projection chamber similar to DUNE could be used for enhanced low energy physics searches. This includes improved sensitivity to supernova and solar neutrinos, and even weakly interacting massive particle dark matter. This talk will focus on tools being developed to support a large-scale radiopurity assay...
CYGNO (a CYGNus TPC with Optical readout) is a gaseous TPC Dark Matter directional experiment, to be hosted at Laboratori Nazionali del Gran Sasso, Italy. It fits into the context of the wider CYGNUS international proto-collaboration, for the development of a Galactic Nuclear Recoil Observatory at the ton-scale with directional sensitivity, having as the main goal the probing of the DM...
Low background rare-event physics experiments and ultrasensitive radiation detectors require materials of the utmost radiopurity to meet their sensitivity goals. Polymers are important materials used extensively in these detectors in a variety of roles, including as insulators and structural supports. Oftentimes, specialized polymer parts are co-located with the active detection target,...
A collaboration involving a US National Laboratory (Brookhaven National Laboratory), a private-sector technology company (Cactus Materials, Inc.) and a University institute (the Santa Cruz Institute for Particle Physics at the University of California, Santa Cruz) has been working on new approaches to the development of highly-granular timing layers for minimum-ionizing particle and X-Ray...
We present various R&Ds of the dual-readout calorimeter for future collider projects. This presentation is based on six letters of interest submitted to Snowmass 2021 and they proposed various interesting studies related to the dual-readout calorimeter. In the letters, following topics are for future e+e- collider experiments (FCC-ee and CEPC): 1) fast optical photon transport at GEANT4, 2)...
As an advanced neutrino detector technology the Liquid Argon Time Projection Chamber (LArTPC) is widely used in recent and upcoming accelerator neutrino experiments. It features a low energy threshold and high spatial resolution that allow for comprehensive reconstruction of event topologies. Both hardware and reconstruction technologies are evolving to improve the LArTPC performance. In...
The Baryon Mapping Experiment (BMX) at Brookhaven Laboratory is a 4-dish radio interferometer operating in the frequency band from 1100 to 1650MHz. It is designed as a technical pathfinder for a future cosmic survey using the intensity mapping technique to measure large-scale 3D cosmic structure traced by the redshifted emission of neutral hydrogen (rest frame wavelength 21cm). The array...
The demand for fast-timing photodetectors is ever-increasing to enhance the capability for better event reconstruction in neutrino and high-energy physics experiments. Large Area Picosecond Photo-Detectors (LAPPDs), which are 20 cm x 20 cm flat panel, micro-channel plate (MCP) based photodetectors bring considerable new capabilities for neutrino event reconstruction in Cherenkov and...
Nowadays Micromegas (MM) are being used as tracking detectors in HEP experiment upgrades as in ATLAS experiment at LHC. Nevertheless, next experiments at very high energy and intensity accelerators will demand stable and efficient operations up to particle fluxes of few orders of magnitude higher. To fulfill such requirements, we are developing the MM technology to increase its rate capability...
LHCb's second level trigger, deployed on a CPU server farm, not only selects events but performs an offline-quality alignment and calibration of the detector and uses this information to allow physics analysts to deploy essentially their full offline analysis level selections (including computing isolation, flavour tagging, etc) at the trigger level. This “real time analysis” concept has also...
Detection mechanisms for low mass bosonic dark matter candidates, such the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark...
We present results from the aging test of a recently fabricated 20 cm × 20 cm Large Area Picosecond Photodetector (LAPPD) by INCOM Inc. A differentiating feature of LAPPD is the use of ALD-GCA-micro channel plates (MCPs) fabricated by utilizing atomic layer deposition (ALD) technology to coat the resistive and emissive films to the surface of bare glass capillary arrays. LAPPD has the largest...
Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities $|{\eta}| < 3$ and are positioned inside the solenoidal magnet. An outer calorimeter, outside...
During the development of new detectors for future experiments or the Upgraded Collider detectors, the ASIC and sensor development often follow parallel paths. This implies that, for the last stages of ASIC development there often exists a significant body of data obtained with high quality waveform sampling that capture the subtleties of real response of the sensors to various particle...
Since 2008, the BESIII (Beijing Spectrometer III) experiment is running at the leptonic collider BEPCII (Beijing Electron Positron Collider II), hosted at the Institute of High Energy Physics of Beijing, PRC. A 10-year extension of the BESIII operations has been approved recently, and both the detector and the collider are now upgrading to cope with the extended physics program. One of the...
Data-intensive science is increasingly reliant on real-time processing capabilities and machine learning workflows, in order to filter and analyze the extreme volumes of data being collected. This is especially true at the intensity frontier of particle physics. Data filtering algorithms, or trigger algorithms, at the LHC drive the data curation process, funneling event records with certain...
A challenge in large LArTPCs is efficient photon collection for low energy, MeV-scale, deposits. Past studies have demonstrated that augmenting traditional ionization-based calorimetry with information from the scintillation signals can greatly improve the precision of measurements of energy deposited. We propose the use of photo-converting dopants to efficiently convert the scintillation...
I will discuss some of the most successful precision probes of fundamental physics to date, which make use of coherent systems of $\mathcal{O}(10^{23})$ particles to study extremely feeble beyond-the-standard-model interactions, such as fifth-forces, low mass dark matter and new sources of CP-violation. I will cover the systems which are currently the most sensitive to new scalar...
The RICH-1 detector of the COMPASS Experiment at CERN has been upgraded in 2016 with four MPGD-based photon detectors covering a total active area of 1.5 m$^2$. They consist in a hybrid combination of two THGEM layers and a Micromegas and convert VUV photons in a CsI layer on one THGEM. The anode is segmented in square pads of 8 mm pitch and the signal is read out via capacitive coupling by an...
The radiation hardness of detectors is of key importance for experiments at future facilities. This requirement drives a global R&D campaign on radiation hard sensors and the development of new irradiation facilities worldwide. The effect of radiation damage is conventionally communicated in terms of the equivalent 1 MeV neutron fluence, converted using a “hardness factor” which depends on the...
Ultra-low radioactive material screening is becoming a key requirement for a successful rare event search experiment such as dark matter and neutrinoless double beta decay searches. We proposed a low-background, large-area, and high-granularity gaseous time projection chamber (TPC) with Micromegas readout plane for surface alpha/beta contamination measurements. With the unique tracking...
The ATLAS detector at CERN’s LHC will undergo a major upgrade prior to the startup of High-Luminosity LHC which affects all major subsystems including trigger and data acquisition. The new Level-0 hardware trigger will be comprised of legacy as well as new systems, among them the Global Trigger which processes full-granularity calorimeter information at 40 MHz and allows for the execution of...
Recent advances in semiconductor 3D integration technology could enable modularity in sensors: An advanced digital chip may be combined with a separately fabricated analog detector front end and a separate detector. This technology will enable common use of highly capable but expensive digital components across sensing mode (imaging, photon counting, photon timing, etc) and wave band (gamma...
A large pixelated liquid argon detector could offer great advantages in studying neutrinos. The 3D imaging capabilities of such a detector could enhance and expand the physics reach of future large-scale detectors such as DUNE. We will present the current status of the Q-Pix development. This novel concept uses continuously integrating low-power charge-sensitive chips that sends signals once...
Large new experiments are focusing on plastic scintillator for their detector design.
MATHUSLA, a proposed long-lived particle detector to be build near CMS at the LHC, plans to use scintillator as its active detector component. It foresees use of 1000+ tons of scintillator extrusions with WLS fiber readout into SIPMs. The spatial coordinate along the extrusion is formed by measuring the...
We present results from our ongoing development of Geiger-mode GaN-photodiodes. Motivated by the silicon photomultiplier's great success, our objective is to transfer the silicon-photomultiplier concept - a matrix of individually quenched single-photon avalanche diodes - to GaN and AlGaN. These are wide band-gap III-N semiconductors with much better intrinsic (V)UV sensitivity than silicon,...
When properly engineered, simple quantum systems such as harmonic oscillators or spins can be excellent detectors of feeble forces and fields. Following a general introduction, I will focus on using optomechanical systems as sensors of weak acceleration and strain fields. Dark matter particles coupling to standard model fields and particles would produce a coherent strain or acceleration...
Neutrinoless double beta decay ($0\nu \beta \beta$) is an extremely rare nuclear decay that occurs when two neutrons in a nucleus simultaneously beta decay without producing any antineutrinos. If observed, $0\nu \beta \beta$ would be the rarest decay process observed, and long target half lives of $10^{28}$ years necessitate development of new background suppression and signal identification...
The NEXT experiment is a neutrino physics program searching for neutrinoless double beta decay using a high pressure gaseous xenon time projection chamber (HPGXeTPC). The HPGXeTPC technology offers several advantages, including excellent energy resolution, topological event discrimination, and low background. NEXT excels on each of these fronts, achieving 1% FWHM energy resolution at 2.6 MeV...
Advances in semiconductor research and development have enabled engineering of scintillation materials based on quantum dot (QD) photoluminescence. This has yielded low-mass and radiation tolerant scintillators with excellent timing and light-yield performance awaiting application in high energy physics experiments. We introduce a detector system of such a scintillator that consists of bulk...
Heavy Ion program of the LHC offers great physics opportunities for CMS and ATLAS.
The Zero Degree Calorimeters (ZDC) are increasingly important for characterizing A+A, p+A, $\gamma$+A and $\gamma$+$\gamma$ collisions at the LHC and EIC.
We present the recent developments in radiation hard fast ZDCs by the ATLAS and CMS heavy ion groups to fully exploit the potential for the QCD physics...
As detector technologies improve, the increase in resolution, number of channels and overall size create immense bandwidth challenges for the data acquisition system, long post acquisition processing times and growing data storage costs. Much of the raw data does not contain useful information and can be significantly reduced with veto and compression systems. The improvements in artificial...
Stellar evolution modeling requires knowledge of the mechanism and cross-section of nuclear reactions. Given the conditions in the stellar interior, the stellar reactions occur predominantly within relatively narrow energy ranges well below the Coulomb barrier.
For many ($\alpha$,$\gamma$), ($p$,$\gamma$) reactions important for stellar nucleosynthesis the measurement of their...
In a multi-channel detector readout system, waveform sampling, digitization and transmitting bits to the data acquisition system constitutes a conventional processing chain. Quantities, such as time-of-arrival and signal magnitude, i.e deposited energy, are estimated by fitting analytical models over the acquired digital data, hence enabling the extraction of signal starting time, peak...
Skipper-CCD is able to measure the charge in each pixel, repeatedly, in a non-destructive way. As a result, the readout noise can be reduced as much as desired [Tiffenberg et al, 2017]. It allows the precise counting of the number of electrons in each pixel ranging from empty pixel to more than 1900 electrons [Rodrigues et al. 2021]. In addition, they account for very high quantum efficiency...
We study the quantum effects that are associated with the nuclear recoil electronic excitations in semiconductor crystals. Our studies exhibit a rate modulation in very low threshold semiconductor detectors, for dark matter (DM) mass < 1 GeV/c$^{2}$, that is correlated with the target nucleus recoil direction. This anisotropic quantum excitation threshold can be used to perform directional DM...
The main goals of the Deep Underground Neutrino Experiment (DUNE) are to measure CP violation in the lepton sector, to make precise measurements of neutrino oscillation parameters, to observe supernova burst neutrinos, and to detect rare processes such as proton decay. To fulfill these goals, DUNE will use a highly capable suite of near detectors with several components, one of which is the...
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data...
We will present a discussion of our revolutionary new detector technology, the “Snowball Chamber,” which is based on the phase transition (of liquid to solid) for metastable fluids, and has been shown to be neutron-sensitive. A water-based supercooled detector has the potential to move past the Neutrino "Fog," and extend the reach of direct detection dark matter experiments to GeV-scale WIMP...
We report on new results and simulations from the Askaryan Calorimeter Experiment (ACE) which uses the coherent microwave Cherenkov emission from high energy particle showers in dielectric-loaded waveguides as calorimetric timing layers with ~1 ps resolution. Above ACE's energy threshold, a single 5 cm thick (1.4 $X_0$) layer of ACE waveguides would provide ~1 ps timing resolution, 3D spatial...
TCAD and SPICE are used to simulate the response from a detector with a large detector-thickness-to-pixel-pitch ratio. The model indicates that the initial rising edge of the Shockley–Ramo current signal on the readout electrode has a very sharp rise time (~16ps), with an amplitude that is directly proportional to the weighting field. A silicon detector with this time resolution would have...
We survey developed techniques in MEMS/NEMS and silicon foundaries used to form vacuum micromachined photodetectors, with gain from dynodes or nanomachined microchannel plates, and to form high quantum efficiency photocathodes because of geometric field or topological areal enhancements. Examples and properties of recent and proposed devices will be shown. Prospects for novel materials such as...
We propose the design of an ultra-sensitive THz photon detector based on a superconducting Cooper Pair Transistor (CPT). A photon absorber is connected to the gate electrode, which is coupled to a quarter wavelength coplanar-waveguide (CPW) resonator. Photon-generated quasiparticles in the absorber modify the charge on the gate, which modulates the resonator inductance that results in a shift...
I will discuss the design of broadband dish antenna axion search experiments targeting the mass range 10 microeV to 10 millieV and the sensor requirements for discovery of QCD axions.
The Electron Ion Collider (EIC) is a new facility that has been proposed in the US to study the structure of nuclear matter in the gluon dominated regime of QCD using Deep Inelastic Scattering (DIS) with precision electromagnetic probes. The project received DOE CD-0 approval in January 2020 and will be sited at Brookhaven National Laboratory. It will utilize the existing RHIC collider to...
The Scintillating Bubble Chamber (SBC) is a rapidly developing novel technique for 0.7 - 7 GeV nuclear recoil detection. Demonstrations in liquid xenon at the few-gram scale have confirmed that this technique combines the event-by-event energy resolution of a liquid-noble scintillation detector with the world-leading electron-recoil discrimination capability of the bubble chamber, and in fact...
The proposed high-luminosity high-energy Electron-Ion Collider (EIC) will provide a clean environment to precisely study several fundamental questions in the high energy and nuclear physics fields. To realize the proposed physics measurements at the EIC, a high granularity, large coverage and high precision detector, which can cover pseudorapidity range from -3.5 to 3.5, provide percentage...
We describe the development of a new position-sensitive detector for neutrons that uses He-3 as the neutron sensing element and operates in ionization mode, without any electron multiplication. The electrons created by the thermal neutron - He3 interaction are collected by discrete anode pads, each connected to an input channel of an ASIC mounted on the back of the anode pad plane. The custom...
Discussion: electronics design resources, training, tools, circuit and systems techniques, access to technology, and important community forums.
We are developing a new type of electromagnetic calorimeter based on a SiW sampling design using silicon pixel sensors with digital readout. A binary readout is possible due to the pixel size of $\approx 30 \times 30 \, \mu \mathrm{m}^2$. At the same time, this unprecedented granularity allows us to measure electromagnetic shower properties with extreme detail. This kind of detector will have...
Over the past decade, advances in arrays of superconducting detectors have revolutionized the field of mm-wave cosmology. Large-format arrays of thousands of transition-edge sensors (TESs) have provided an exquisite view of the mm-wave sky. The next decade promises to continue this trend, with a number of upcoming experiments such as the Simon's Observatory, CCAT-prime, SP-TMA, and CMB-S4....
A Low Energy Recoil Tracker (ALERT) experiment will occur in Hall B at Jefferson Laboratory, Virginia, USA. It will study the partonic structure of bound nucleons in He-4. The ALERT detector must track and identify low energy nucleons and light nuclei of momenta ranging from 70 MeV/c to 250 MeV/c at a rate up to 60 MHz. It will be used in tandem with the already installed CLAS12 spectrometer...
Several support structures for CMS Phase II Tracker upgrades, namely the IT support tube and the IT service cylinder, have been through their first iterations of prototyping at Purdue University’s Composites Manufacturing and Simulation Center (CMSC) and Purdue Silicon Detector Lab (PSDL). The mass, stiffness, and dimensional tolerance were the primary design objectives. In order to meet ...
The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the Charged Lepton Flavour Violating neutrino-less coherent conversion -N(A,Z) e-N(A,Z) of a negative muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of physics beyond the Standard Model. Mu2e detectors comprise a straw-tracker, an...
We describe a method for precisely regulating the gradient magnet power supply (GMPS) at the Fermilab Booster accelerator complex using a neural network (NN). We demonstrate preliminary results by training a surrogate machine-learning model on real accelerator data, and using the surrogate model in turn to train the NN for its regulation task. We additionally show how the neural networks that...
We present a fully data-driven approach for determining the spin-independent dark matter-electron scattering rate in any detector material. The scattering matrix element is completely determined by the complex dielectric function, which automatically contains all many-body effects and is directly measurable with X-ray scattering and electron energy-loss spectroscopy. We comment on the...
HeRALD - Helium Roton Apparatus for Light Dark Matter uses bolometers with TES readout to detect signals in superfluid Helium-4 from light dark matter. The low energy threshold enabled by cryogenic bolometers, with signal amplified by quantum evaporation of helium atoms from phonons/rotons in superfluid Helium-4 and the low atomic mass of Helium-4 with better kinematic matching for light dark...
We report on benchtop measurements and analysis techniques that enable us to effectively segment a fiber hadronic calorimeter longitudinally by fast digitization of pulse shapes. By combining sub-nanosecond digitization and silicon photomultipliers in a fiber calorimeter, we propose an enhancement to the traditional dual readout design that would provide benefits of both high-granularity and...
Line intensity mapping (LIM) is an emerging observational technique to measure the large-scale structure of the Universe in three dimensions, traced by a redshifted emission line, without resolving individual objects. Future experiments promise to extend the observable volume beyond the redshift reach of traditional galaxy surveys, improving precision on the LCDM cosmological model and...
We discuss techniques and materials to develop optimize the energy resolution in the long-term performance of calorimeters as required by the challenging environment of future colliders and high intensity experiments. We extend the Dual Readout/Cerenkov compensation by using 2 tile types, one sensitive to to e-m showers, such as quartz, aerogel, Teflon AF or other low index Cerenkov tiles, and...
Hls4ml is a user-friendly software, based on High-Level Synthesis (HLS), designed to deploy deep neural networks on FPGAs within applications characterized by tight constraints in terms of latency and resources. In this talk we present the core features of the library and recent progresses in supporting quantization-aware training with arbitrary precision, DNN architectures with large...
The Mu2e experiment at Fermilab will search for the neutrinoless conversion of a muon into an electron in the field of an Al nucleus, with a sensitivity improvement of four orders of magnitude over previous measurements. Observation of this process would be unambiguous evidence for physics beyond the Standard Model. The signature of muon to electron conversion is a monoenergetic electron with...
Microwave kinetic inductance detectors provide a scalable platform for mapping the cosmic microwave background, especially at frequencies above 150 GHz, where arrays of transition-edge sensors cannot be made densely enough to efficiently sample telescope focal planes. Arcminute-resolution CMB observations at these higher frequencies can fill a unique niche in cosmology, yielding high-fidelity...
Performance requirements for future calorimeter designs in the context of reconstruction of tens-of-TeV jets at 100 TeV colliders are discussed. Lateral cell segmentation was studied by reconstructing substructure variables for hadronic jets above 10~TeV in transverse momentum using the Geant4 simulations with a different granularity of calorimeter cells. The physics potential of timing layers...
To meet the high precision physical goals in the future e$^+$e$^-$ circular collider (CEPC), the high resolution tracker detector for the particle track reconstruction ($\lt$100$\mu$m) and particle identification are demanded. Time Projection Chamber (TPC) is one of the main concept option of the central tracker detector. On behalf of the track detector subgroup in CEPC, the status and update...
overview of KA25 program
funding opportunities
special initiatives
after the BRN
hopes for Snowmass/P5
Fast imaging of optical photons may play important role not only in particle physics experiments but also in astronomical observations. It has been recently suggested that optical interferometers would not require a phase-stable optical link between the stations if instead sources of quantum-mechanically entangled pairs could be provided to them, enabling extra-long baselines and, therefore,...
Single photon counting and timing devices, such as SiPMs and Photon-to-Digital Converters (PDC—a.k.a. digital SiPM) are playing a key role in breakthrough experiments. From dark matter search and neutrino physics in noble liquids, neutron imaging, medical imaging (positron emission tomography and computed tomography), to quantum sensing devices for quantum key distribution systems, these...
Neuromorphic computing (NC), which uses a network of artificial synapses and neurons to construct individual neural units, can enable the information processed and storage in the same units. If networks are formed with these neural units and new algorithmic models using the neuron’s spike capabilities are used, NC is expected to provide critical computing hardware for emerging artificial...
The Scintillating Bubble Chamber (SBC) is a rapidly developing novel technique for 0.7 - 7 GeV nuclear recoil detection. Demonstrations in liquid xenon at the few-gram scale have confirmed that this technique combines the event-by-event energy resolution of a liquid-noble scintillation detector with the world-leading electron-recoil discrimination capability of the bubble chamber, and in fact...
The High Luminosity era of the Large Hadron Collider (LHC) starting in 2027 promises exciting discovery potential, giving unprecedented precision on key new physics models and characterization of the Higgs boson. In order to maintain current performance in this challenging environment, the ATLAS Liquid Argon electromagnetic calorimeter will get an entirely new readout that is fast enough to...
The CYGNO experiment aims at making use of the directionality of nuclear recoils produced in the sensitive volume of a gaseous TPC with optical readout to uniquely identify Dark Matter signals, whose direction would point to the Cygnus constellation.
As one of the steps towards the CYGNUS-TPC network of underground observatories for directional DM search at the ton scale, CYGNO collaboration...
The applications of neutron detection are growing also outside the particle physics community: radioactive waste management (RWM), radioactive portal monitoring (RPM), and imaging are some of the most active fields. Due to the shortage of $\mathrm{He^3}$, it is necessary to find reliable and effective alternatives. One of the most promising techniques is to use a Boron-coated gas detector: the...
Real-time detection of alpha-particles is an essential requirement for a variety of applications, such as in nuclear medicine, nonproliferation, and other security applications. We present a new imaging technique for alpha-particles using a fast optical camera focused on a thin scintillator. Detection of alpha-particles is based on their interaction in a thin layer of LYSO fast scintillator,...
The Belle II barrel region is instrumented with the Time of Propagation (TOP) particle identification system based on sixteen quartz radiator bars arranged around the interaction point. Due to the mechanical design of the TOP system these quartz bars do not overlap, but leave a gap of around 2cm between them. This leads to around 6% of all tracks in the nominal TOP acceptance region to escape...
The Haloscope at Yale Sensitive to Axion Cold dark matter (HAYSTAC) has now finished its first data collection run using quantum squeezed states to enhance the search for axions. The squeezed state receiver consists of two Josephson parametric amplifiers. The first squeezes vacuum noise, while the second amplifies a hypothetical axion signal against a background of squeezed noise. This...
VUV scintillation light detection in noble liquids is a hot topic in detector R&D given its wide range of applicability: from next generation of acceleration neutrino detectors to dark matters, to neutrino less double beta decay. In this talk, we present advancements in light detection R&D via coatings of thin semiconductive VUV sensitive films. With the proper choice of photoconductive...
The scintillator section of the CMS high granularity calorimeter (HGCAL) will be composed of the SiPM-on-tile technology, where the SiPM is located in a dimple machined into the scintillator tile surface. This design directly couples the light produced from a scintillator tile to an individual SiPM, which is crucial for calibrating the detector throughout its lifetime. We report the light...
3D ionization information facilitates unambiguous mm-scale fine-tracking in high occupancy liquid argon time-projection chamber (LArTPC) environments. LArPix-v2 incorporates low-power, low-noise 64-channel custom ASICs that can operate at cryogenic temperatures with a mixed-signal large-format printed circuit board for an unambiguous 3D charge-readout anode. With robust I/O and control...
The bubble chamber is a vetted technology for low background low energy nuclear recoil detection, which has for the past decade been employed primarily in the search for spin-dependent dark matter, for WIMP masses above ~10 GeV. New technology is being developed by the Scintillating Bubble Chamber (SBC) collaboration to bring liquid noble bubble chambers to the search for low-mass dark matter...
This note concentrates on calorimetry which will survive, with energy-flow, rate, and timing, in the forward region of future colliders, high intensity experiments, and orbiting systems. It uses PMT as direct calorimeter sensors to detect shower particles via Cerenkov light in the PMT window, and/or by direct secondary emission from shower particles traversing the dynodes. The secondary...