The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be the brightest spallation neutron source in the world, when its driving superconducting proton linac achieves the design power of 5 MW at 2 GeV. Such a high power linac requires production, efficient acceleration, and almost no-loss transport of a high current beam (62.5 mA), thus making its design and...
The PIP-II and DUNE/LBNF projects will constitute a 1.2 MW long-baseline neutrino facility at Fermilab. The DUNE/LBNF Phase II calls for a 2.4 MW proton power upgrade, and this talk will outline one compelling path towards achieving that benchmark and also provides a robust experimental program at other energies. The proposed facility include a CW-capable 2GeV linac, a 2 GeV 0.5-2 MW pulsed...
The main ring synchrotron (MR) of Japan Proton Accelerator Research Complex (J-PARC) has provided world-leading-intensity protons for the long-baseline neutrino oscillation experiment (T2K). We launched the upgrade plan to increase the beam power for realizing higher precision physics experiments. The beam power for T2K was 515 kW before the upgrade, and we aim at 1.3 MW by 2028. One of the...
A high-energy muon collider could be the most powerful and cost-effective collider approach in the multi-TeV regime, and a neutrino source based on decay of an intense muon beam would be ideal for measurement of neutrino oscillation parameters. Muon beams may be created through the decay of pions produced in the interaction of a proton beam with a target. The muons are subsequently accelerated...
The Forward Physics Facility (FPF) at the LHC will detect neutrinos
produced in proton collisions. In addition to neutrinos from pion
and kaon decays, there will be significant contribution,
particularly for $\nu_e$ and $\nu_\tau$ flavors, from decay
of charmed mesons. We present our predictions for the neutrino
flux from charm decays as evaluated in different QCD approaches:
the...
The NuMI target facility at Fermilab produces an intense muon neutrino beam for NOvA (NuMI Off-axis $\nu_e$ Appearance) long baseline neutrino experiment. Three arrays of muon monitors located in the downstream of the hadron absorber in the NuMI beamline provide the measurements of the primary beam and horn current quality. We have studied the response of muon monitors with the proton beam...
As the J-PARC Main Ring accelerator undergoes upgrades to 1.3 MW, upgrades to proton beam monitors in the neutrino extraction beamline are also underway. These upgrades will allow for stable running of the beamline for the current T2K and future Hyper-K long-baseline neutrino oscillation experiments. Important upgrades include those towards improving monitor radiation hardness and minimizing...
With the Main Injector Neutrino Oscillation Search (MINOS) experiment decommissioned, muon and hadron monitors became an important diagnostic tool for the NuMI Off-axis $\nu_e$ Appearance (NOvA) experiment at Fermilab to monitor the Neutrinos at the Main Injector (NuMI) beam. The goal of this study is to maintain the quality of the monitor signals and to establish correlations with the...
The T2K experiment is a neutrino oscillation experiment running at J-PARC. In order to increase the statistics of neutrino data and improve the sensitivity to CP violation, upgrade of the neutrino beam is currently ongoing. The repetition cycle will be shortened from 2.48s to 1.16s and the number of protons in each pulse will be increased. With these upgrades, the beam intensity will be...
The European Spallation Source (ESS) will be the most powerful neutron source in the world. This facility offers a unique opportunity for studying fundamental physics, in particular the matter-antimatter asymmetry in the Universe thanks to the development of a very intense neutrino superbeam. The ESS neutrino Super-Beam project proposes an accelerator complex, complimentary to the existing...
A high-power target system is a key beam element to complete future High Energy Physics (HEP) experiments but in the recent past, major accelerator facilities have been limited in beam power not by their accelerators, but by the beam intercepting device survivability. The target must then endure high power pulsed beam, leading to high cycle thermal stresses/pressures and thermal shocks. The...
MELODY at the China Neutron Spallation Source (CSNS) is the first muon beam that will be built in China for muon science. It will take part at the second phase of CSNS (II) and utilize 20 kW out of 500 kW of the proton beam at CSNS. Since 2021, the various components of the muon beam are under design. In this talk, a brief introduction of the overall design of MELODY at the high energy proton...
The IsoDAR neutrino source comprises a novel compact cyclotron capable of delivering 10 mA of 60 MeV protons in cw mode and a high-power neutrino production target. It has obtained preliminary approval to run at the new underground facility Yemilab in South Korea. IsoDAR will produce a very pure, isotropic $\bar{\nu}_e$ source, with peak neutrino energy around 6 MeV and endpoint around 15 MeV....
The FNAL accelerator complex is poised to reach MW neutrino beams on target for the exploration of the dark sector physics and rare physics program spaces. Future operations of the complex will include the CW capable PIPII linac at beam intensities that have not been seen before [1, 2]. The ambitious beam program relies on multi-turn H− injection into the FNAL Booster and then
extracted into...
The ENUBET project aims at reducing to 1% the flux related systematics on a narrow band neutrino beam through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design of a meson transfer line with conventional magnets that maximizes the yield of K$^+$ and $\pi^+$, while minimizing the total length to reduce meson decays in the...
The Neutrinos from Stored Muons, nuSTORM, facility has been designed to deliver a definitive neutrino-nucleus scattering programme using neutrino beams from the decay of muons confined within a
storage ring. The facility is unique, it will be capable of storing muon beams of both charges with momentum of between 1 GeV/c and 6 GeV/c and a momentum spread of ±16%. The neutrino beams generated...
Current machine concepts developed by Muon Accelerator Program (MAP) for a neutrino factory can be extended to reach the 63~GeV needed for s-channel production of the Higgs boson and beyond, by the addition of one or two RLAs, Envisioned staged approach, assumes a single-pass linac with a combination of 325 and 650 MHz superconducting RF, followed by a Recirculating Linear Accelerator(RLA)...
The Fermilab site can accommodate a Muon Collider at up to 10 TeV center of mass energy. Parameters for Fermilab-based muon colliders are presented. Recent related research on rapid-cycling acceleration, muon cooling, proton sources and targetry is discussed. Compatibility with neutrino sources and neutrino factories is also discussed as well as directions for future research.