The main source of systematic uncertainty on neutrino cross section measurements at the GeV scale originates from the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a conventional narrow-band neutrino beam. Large...
The Light Dark Matter eXperiment (LDMX) is a proposed small-scale accelerator experiment designed to search for dark matter using missing energy and momentum techniques from multi-GeV electro-nuclear interactions. In order to detect and veto against energy losses from standard electro-nuclear scattering processes, the detector design features charged particle tracking and hermetic calorimetry...
The ability of current and next generation accelerator-based neutrino-oscillation measurements to
reach their desired sensitivity requires a detailed understanding of neutrino-nucleus interactions.
These include precise knowledge of the relevant cross sections and of our ability to reconstruct
the incident neutrino energy from the measured final state particles. Incomplete understanding...
State-of-the-art predictions of accelerator-based neutrino fluxes have uncertainties ranging from 5-15%, dominated by hadron production uncertainties. The EMPHATIC Collaboration has proposed a unique, compact spectrometer to measure hadron-scattering and hadron-production cross sections that are needed to reduce neutrino flux uncertainties for current and future neutrino experiments to the...
We report on a phenomenological analysis of all available electron scattering data on carbon (about 8000 differential cross section measurements) and oxygen at all values of q. The QE cross section is modeled within the framework of the superscaling model (including Pauli blocking). In addition to the expected enhancement of the transverse QE response function we find that at low values of...
MicroBooNE data of charged current inclusive neutrino cross sections on argon as a function of different kinematical variables have recently appeared. We compare these data to our theoretical calculations after a brief review of our RPA model and of its successful predictions for the MiniBooNE and T2K cross sections on carbon. Overall we find an agreement with MicroBooNE data in spite of a...
The description of final-state interactions (FSI) in the large phase space probed in neutrino experiments poses a great challenge. In neutrino experiments, which operate under semi-inclusive conditions, cascade models are commonly used for this task, while under exclusive conditions FSI can be treated with relativistic optical potentials (ROP). We formulate conditions under which the ROP...
Nuclear effects in neutrino-nucleus scattering are one of the main sources of uncertainty in the analysis of neutrino oscillation experiments. Due to the extended neutrino energy distribution (flux), very different reaction mechanisms contribute to the cross section at the same time. Measurements of muon momentum in CC0$\pi$ events are very important for experiments like T2K, where most of the...
We present a global analysis of neutrino DIS cross-sections in the framework of nuclear parton distribution functions (PDFs). In our previous analysis (circa 2011), we concluded that some neutrino DIS data, particularly from the NuTeV experiment, were incompatible with the remaining nuclear scattering data. We have now performed a follow-up analysis that improves the previous study in many...
Accurate neutrino cross-section measurements are required for precise measurements of neutrino oscillation physics such as CP-violation and the ordering of the neutrino masses. In this talk, I will give an overview of neutrino cross section measurements with NuMI neutrino beam, specifically neutrino cross sections from MINERvA experiment and prospects of neutrino-Argon cross-section...
The GENIE neutrino event generator seeks to be a universal tool for simulating neutrino-nucleus scattering across the wide energy range of interest for current and future experiments. The international GENIE Collaboration maintains and continues to develop its software suite to meet the interaction modeling needs of a broad user community. Recent improvements to GENIE include implementation of...
The MicroBooNE detector is a liquid argon time projection chamber (LArTPC) which recently finished recording neutrinos from both the Booster Neutrino Beam and the Neutrinos at the Main Injector beam at Fermilab. One of the primary physics goals of MicroBooNE is to make detailed measurements of neutrino-argon scattering cross sections, which are critical for the success of future neutrino...
One of the main physics goals of the MicroBooNE experiment at Fermilab is to perform high-statistics measurements of neutrino-argon interaction cross sections. These measurements will be essential for future neutrino oscillation experiments, including the Short-Baseline Neutrino program and the Deep Underground Neutrino Experiment (DUNE), to achieve an unprecedented level of precision....
Hadron cross-section measurement is crucial to understand the final-state interactions which accounts for a large source of systematic uncertainty in neutrino oscillation experiments. ProtoDUNE-SP with its charged particle beam data can provide such experimental constraints. This work shows the pion-argon inclusive cross-section measurement using ProtoDUNE-SP Run 1 1 GeV/c beam data. We...
NEUT is a neutrino-nucleus interaction simulation. It can be used to simulate interactions for neutrinos with between 100 MeV and a few TeV of energy. NEUT is also capable of simulating hadron interactions within a nucleus and is used to model nucleon decay and hadron--nucleus interactions for particle propagation in detector simulations. This talk describes the range of interaction channels...
SND@LHC is a compact and stand-alone experiment to perform measurements with neutrinos produced at the LHC in a hitherto unexplored pseudo-rapidity region of 7.2 < 𝜂 < 8.4, complementary to all the other experiments at the LHC. The experiment is to be located 480 m downstream of IP1 in the unused TI18 tunnel. The detector is composed of a hybrid system based on an 800 kg target mass of...
The detection of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) performed in 2017 and 2021 with cesium iodide and in 2020 with liquid argon by the COHERENT collaboration has paved the way for precision phenomenological measurements of many diverse physical phenomena.
CEνNS is a neutral current process induced by the exchange of a Z boson that permits to put interesting constraints...
The DsTau experiment at CERN-SPS has been proposed to measure an inclusive differential cross-section of a Ds production with a consecutive decay to tau lepton in p-A interactions. A precise measurement of the tau neutrino cross section would enable a search for new physics effects such as testing the Lepton Universality (LU) of Standard Model in neutrino interactions. The detector is...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gadolinium-loaded water Cherenkov detector located at the Booster Neutrino Beamline at Fermilab. One of the primary physics goals is to measure the number of final-state neutrons from neutrino-nucleus interactions in water. This measurement will improve our understanding of these complex interactions and help reduce...
The detection and cross section measurement of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) is vital for particle physics, astrophysics and nuclear physics. In 2017,the COHERNET collaboration reported the first observation of CEvNS signal. A new CEvNS detection experiment is under our schedule. Four pure CsI crystals, weight 3kg and coupled with two Photon Multiplier Tubes (PMTs) each,...
The nuSTORM facility will provide $\nu_e$ and $\nu_\mu$ beams from the decay of low energy muons confined within a storage ring. The neutrino and anti-neutrino energy distributions will be precisely known. The precision goals of the oscillation program require a realistic modeling of neutrino-nucleus scattering dynamics. nuSTORM can contribute to this effort by providing the ultimate...
Uncertainty of the neutrino-nucleus interaction models is one of the major sources of systematic uncertainty for neutrino oscillation experiments. The NINJA experiment aims to measure the neutrino-nucleus interactions precisely using a nuclear emulsion detector called Emulsion Cloud Chamber (ECC). The sub-micron spatial resolution and a high sampling rate of the ECC allow us to detect short...
A detailed understanding of neutrino-nucleus interactions is essential for the precise measurement of neutrino oscillations at long baseline experiments, such as T2K. The T2K near detector complex, designed to constrain the T2K flux and cross section models, also provides a complementary program of neutrino interaction cross-section measurements. Through the use of multiple target materials...
NOvA is a long-baseline neutrino oscillation experiment primarily designed to measure the muon (anti)neutrino disappearance and electron (anti)neutrino appearance in the off-axis Fermilab NuMI beam. It uses two functionally identical liquid scintillator detectors separated by 810 km and a narrow band beam centered around 2 GeV. Energetic neutral pions produced in $\Delta$ resonance,...
Simulation plays a critical role in neutrino experiments. But for a variety of reasons no simulation is perfect, and experiments must confront discrepancies between simulated predictions and their own measurements and observations. This inevitably leads to the need to tune the simulation in order to obtain robust and reasonable systematic uncertainties in analyses. In this talk I give an...